This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085480 Expansion of 3*x*(1+2*x)/(1-3*x-3*x^2). 3
 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A Jacobsthal variation. p - q = sqrt 21; p*q = -3; p + q = 3. REFERENCES Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", Wiley, 2001, p. 471. LINKS Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (3,3). FORMULA a(n) = p^n + q^n, where p = (3 + sqrt 21)/2, q = (3 - sqrt 21)/2. a(n)=3*a(n-1)+3*a(n-2), a(1)=3, a(2)=15. [From Philippe Deléham, Nov 19 2008] G.f.: G(0)/x -2/x, where G(k)= 1 + 1/(1 - x*(7*k-3)/(x*(7*k+4) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013 EXAMPLE a(4) = q^4 + q^4 = 207; p^5 + q^5 = 783, where p = (3 + sqrt 21)/2, q = (3 - sqrt 21)/2. CROSSREFS Cf. A030195. Sequence in context: A290764 A286986 A261565 * A265974 A099581 A026696 Adjacent sequences:  A085477 A085478 A085479 * A085481 A085482 A085483 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Jul 02 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 00:07 EST 2018. Contains 318052 sequences. (Running on oeis4.)