login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030195
a(n) = 3*a(n-1) + 3*a(n-2), a(0)=0, a(1)=1.
53
0, 1, 3, 12, 45, 171, 648, 2457, 9315, 35316, 133893, 507627, 1924560, 7296561, 27663363, 104879772, 397629405, 1507527531, 5715470808, 21668995017, 82153397475, 311467177476, 1180861724853, 4476986706987, 16973545295520
OFFSET
0,3
COMMENTS
Scaled Chebyshev U-polynomials evaluated at I*sqrt(3)/2.
Number of zeros in the substitution system {0 -> 1111100, 1 -> 10} at step n from initial string "1" (1 -> 10 -> 101111100 -> ...). - Ilya Gutkovskiy, Apr 10 2017
a(n+1) is the number of compositions of n having parts 1 and 2, both of three kinds. - Gregory L. Simay, Sep 21 2017
More generally, define a(n) = k*a(n-1) + k*a(n-2), a(0) = 0 and a(1) = 1. Then g.f. a(n) = 1/(1 - k*x - k*x^2) and a(n+1) is the number of compositions of n having parts 1 and 2, both of k kinds. - Gregory L. Simay, Sep 22 2017
LINKS
Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=q=3.
Tanya Khovanova, Recursive Sequences
W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs. (39), (41) and (45), rhs, m=3.
FORMULA
a(n+1) = (-I*sqrt(3))^n*U(n, I*sqrt(3)/2).
G.f.: x / (1 - 3*x - 3*x^2).
a(n+1) = Sum_{k=0..floor(n/2)} 3^(n-k)*binomial(n-k, k). - Emeric Deutsch, Nov 14 2001
a(n) = (p^n - q^n)/sqrt(21); p = (3 + sqrt 21)/2, q = (3 - sqrt 21)/2. - Gary W. Adamson, Jul 02 2003
For n > 0, a(n) = Sum_{k=0..n-1} (2^k)*A063967(n-1,k). - Gerald McGarvey, Jul 23 2006
a(n+1) = Sum_{k=0..n} 2^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
EXAMPLE
G.f. = x + 3*x^2 + 12*x^3 + 45*x^4 + 171*x^5 + 648*x^6 + 2457*x^7 + ...
MATHEMATICA
CoefficientList[Series[1/(1-3x-3x^2), {x, 0, 25}], x] (* Zerinvary Lajos, Mar 22 2007 *)
LinearRecurrence[{3, 3}, {0, 1}, 24] (* Or *)
RecurrenceTable[{a[n] == 3 a[n - 1] + 3 a[n - 2], a[0] == 0, a[1] == 1}, a, {n, 0, 23}] (* Robert G. Wilson v, Aug 18 2012 *)
PROG
(Sage) [lucas_number1(n, 3, -3) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009
(PARI) {a(n) = n--; polchebyshev(n, 2, I*sqrt(3)/2) * (-I*sqrt(3))^n};
(Haskell)
a030195 n = a030195_list !! n
a030195_list =
0 : 1 : map (* 3) (zipWith (+) a030195_list (tail a030195_list))
-- Reinhard Zumkeller, Oct 14 2011
(Magma) I:=[0, 1]; [n le 2 select I[n] else 3*Self(n-1) + 3*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
CROSSREFS
Equals round(A085480(n)/sqrt(21)).
Sequence in context: A128593 A359813 A085481 * A114515 A192467 A151162
KEYWORD
nonn,easy
EXTENSIONS
Edited by Ralf Stephan, Aug 02 2004
I simplified the definition. As a result the offsets in some of the formulas may need to shifted by 1. - N. J. A. Sloane, Apr 01 2006
Formulas shifted to match offset. - Charles R Greathouse IV, Jan 31 2011
STATUS
approved