login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108898
a(n+3) = 3*a(n+2) - 2*a(n), a(0) = -1, a(1) = 1, a(2) = 3.
10
-1, 1, 3, 11, 31, 87, 239, 655, 1791, 4895, 13375, 36543, 99839, 272767, 745215, 2035967, 5562367, 15196671, 41518079, 113429503, 309895167, 846649343, 2313089023, 6319476735, 17265131519, 47169216511, 128868696063, 352075825151, 961889042431, 2627929735167, 7179637555199
OFFSET
0,3
COMMENTS
In reference to the program code, "ibasek" corresponds to the floretion 'ik'. Sequences in this same batch are "kbase" = A005665 (Tower of Hanoi with cyclic moves only.) and "ibase" = A077846.
FORMULA
a(n) = A028860(n+2)-1.
G.f.: (-1+4*x)/((x-1)*(2*x^2+2*x-1)).
From Colin Barker, Apr 29 2019: (Start)
a(n) = (-1 + (-(1-sqrt(3))^n + (1+sqrt(3))^n)/sqrt(3)).
a(n) = 3*a(n-1) - 2*a(n-3) for n>2.
(End)
MAPLE
seriestolist(series((-1+4*x)/((x-1)*(2*x^2+2*x-1)), x=0, 31)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2ibaseksumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i + .5'j - .5'k + .5i' - .5j' + .5k' + .5'ij' + .5'ik' - .5'ji' - .5'ki'; Sumtype is set to:sum[(Y[0], Y[1], Y[2]), mod(3)
MATHEMATICA
LinearRecurrence[{3, 0, -2}, {-1, 1, 3}, 40] (* Paolo Xausa, Aug 21 2024 *)
PROG
(Haskell)
a108898 n = a108898_list !! n
a108898_list = -1 : 1 : 3 :
zipWith (-) (map (* 3) $ drop 2 a108898_list) (map (* 2) a108898_list)
-- Reinhard Zumkeller, Oct 15 2011
(PARI) Vec(-(1 - 4*x) / ((1 - x)*(1 - 2*x - 2*x^2)) + O(x^40)) \\ Colin Barker, Apr 29 2019
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jul 16 2005
STATUS
approved