login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026150 a(0) = a(1) = 1; a(n+2) = 2*a(n+1) + 2*a(n). 54
1, 1, 4, 10, 28, 76, 208, 568, 1552, 4240, 11584, 31648, 86464, 236224, 645376, 1763200, 4817152, 13160704, 35955712, 98232832, 268377088, 733219840, 2003193856, 5472827392, 14952042496, 40849739776 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n+1)/A002605(n) converges to sqrt(3). - Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
a(n+1)/a(n) converges to 1 + sqrt(3) = 2.732050807568877293.... - Philippe Deléham, Jul 03 2005
Binomial transform of expansion of cosh(sqrt(3)x) (A000244 with interpolated zeros); inverse binomial transform of A001075. - Philippe Deléham, Jul 04 2005
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 3 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(3). - Cino Hilliard, Sep 25 2005
Inverse binomial transform of A001075: (1, 2, 7, 26, 97, 362, ...). - Gary W. Adamson, Nov 23 2007
Starting (1, 4, 10, 28, 76, ...), the sequence is the binomial transform of [1, 3, 3, 9, 9, 27, 27, 81, 81, ...], and inverse binomial transform of A001834: (1, 5, 19, 71, 265, ...). - Gary W. Adamson, Nov 30 2007
[1, 3; 1, 1]^n * [1,0] = [a(n), A002605(n)]. - Gary W. Adamson, Mar 21 2008
(1 + sqrt(3))^n = a(n) + A002605(n)*(sqrt(3)). - Gary W. Adamson, Mar 21 2008
Equals right border of triangle A143908. Also, starting (1, 4, 10, 28, ...) = row sums of triangle A143908 and INVERT transform of (1, 3, 3, 3, ...). - Gary W. Adamson, Sep 06 2008
a(n) is the number of compositions of n when there are 1 type of 1 and 3 types of other natural numbers. - Milan Janjic, Aug 13 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 85, 277, 337 and 340, lead to this sequence (without the first leading 1). For the corner squares these vectors lead to the companion sequence A002605 (without the leading 0). - Johannes W. Meijer, Aug 15 2010
Pisano period lengths: 1, 1, 1, 1, 24, 1, 48, 1, 3, 24, 10, 1, 12, 48, 24, 1,144, 3,180, 24, ... - R. J. Mathar, Aug 10 2012
(1 + sqrt(3))^n = a(n) + A002605(n)*sqrt(3), for n >= 0; integers in the real quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 10 2018
a(n) is also the number of solutions for cyclic three-dimensional stable matching instances with master preference lists of size n (Escamocher and O'Sullivan 2018). - Guillaume Escamocher, Jun 15 2018
Starting from a(1), first differences of A005665. - Ivan N. Ianakiev, Nov 22 2019
Number of 3-permutations of n elements avoiding the patterns 231, 312. See Bonichon and Sun. - Michel Marcus, Aug 19 2022
REFERENCES
John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
LINKS
Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
A. Burstein, S. Kitaev and T. Mansour, Independent sets in certain classes of (almost) regular graphs, arXiv:math/0310379 [math.CO], 2003.
Guillaume Escamocher and Barry O'Sullivan, Three-Dimensional Matching Instances Are Rich in Stable Matchings, CPAIOR 2018, pages 182-197.
Tanya Khovanova, Recursive Sequences
Emanuele Munarini, A generalization of André-Jeannin's symmetric identity, Pure Mathematics and Applications (2018) Vol. 27, No. 1, 98-118.
Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
FORMULA
a(n) = (1/2)*((1 + sqrt(3))^n + (1 - sqrt(3))^n). - Benoit Cloitre, Oct 28 2002
G.f.: (1 - x)/(1 - 2*x - 2*x^2).
a(n) = a(n-1) + A083337(n-1). A083337(n)/a(n) converges to sqrt(3). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
From Paul Barry, May 15 2003: (Start)
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*3^k;
E.g.f.: exp(x)*cosh(sqrt(3)x). (End)
a(n) = Sum_{k=0..n} A098158(n,k)*3^(n - k). - Philippe Deléham, Dec 26 2007
a(n) = upper left and lower right terms of [1, 1; 3, 1]^n. (1 + sqrt(3))^n = a(n) + A083337(n)/(sqrt(3)). - Gary W. Adamson, Mar 12 2008
a(n) = A080040(n)/2. - Philippe Deléham, Nov 19 2008
If p[1] = 1, and p[i] = 3, (i > 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j + 1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = det A. - Milan Janjic, Apr 29 2010
a(n) = 2 * A052945(n-1). - Vladimir Joseph Stephan Orlovsky, Mar 24 2011
a(n) = round((1 + sqrt(3))^n/2) for n > 0. - Bruno Berselli, Feb 04 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k - 1)/(x*(3*k + 2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
a(n) = (-sqrt(2)*i)^n*T(n,sqrt(2)*i/2), with i = sqrt(-1) and the Chebyshev T-polynomials (A053120). - Wolfdieter Lang, Feb 10 2018
EXAMPLE
G.f. = 1 + x + 4*x^2 + 10*x^3 + 28*x^4 + 76*x^5 + 208*x^6 + 568*x^7 + ...
MAPLE
with(combstruct):ZL0:=S=Prod(Sequence(Prod(a, Sequence(b))), a):ZL1:=Prod(begin_blockP, Z, end_blockP):ZL2:=Prod(begin_blockLR, Z, Sequence(Prod(mu_length, Z), card>=1), end_blockLR): ZL3:=Prod(begin_blockRL, Sequence(Prod(mu_length, Z), card>=1), Z, end_blockRL):Q:=subs([a=Union(ZL2, ZL2, ZL2), b=ZL1], ZL0), begin_blockP=Epsilon, end_blockP=Epsilon, begin_blockLR=Epsilon, end_blockLR=Epsilon, begin_blockRL=Epsilon, end_blockRL=Epsilon, mu_length=Epsilon:temp15:=draw([S, {Q}, unlabelled], size=15):seq(count([S, {Q}, unlabelled], size=n)/3, n=2..27); # Zerinvary Lajos, Mar 08 2008
MATHEMATICA
Expand[Table[((1 + Sqrt[3])^n + (1 - Sqrt[3])^n)/(2), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
LinearRecurrence[{2, 2}, {1, 1}, 30] (* T. D. Noe, Mar 25 2011 *)
Round@Table[LucasL[n, Sqrt[2]] 2^(n/2 - 1), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, real((1 + quadgen(12))^n))};
(Sage) from sage.combinat.sloane_functions import recur_gen2; it = recur_gen2(1, 1, 2, 2); [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
(Sage) [lucas_number2(n, 2, -2)/2 for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
(Haskell)
a026150 n = a026150_list !! n
a026150_list = 1 : 1 : map (* 2) (zipWith (+) a026150_list (tail
a026150_list))
-- Reinhard Zumkeller, Oct 15 2011
(Maxima) a(n) := if n<=1 then 1 else 2*a(n-1)+2*a(n-2);
makelist(a(n), n, 0, 20); /* Emanuele Munarini, Apr 14 2017 */
(Magma) [n le 2 select 1 else 2*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
CROSSREFS
First differences of A002605.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Sequence in context: A111308 A348057 A121302 * A026123 A091468 A103457
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 04:42 EDT 2024. Contains 371964 sequences. (Running on oeis4.)