|
|
A046717
|
|
a(n) = 2*a(n-1) + 3*a(n-2), a(0) = a(1) = 1.
|
|
53
|
|
|
1, 1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165, 3812798742493, 11438396227481
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Form the digraph with matrix A = [0,1,1,1;1,0,1,1;1,1,0,1;1,0,1,1]. Then the sequence 0,1,1,5,... or (3^(n-1)-(-1)^n)/2+0^n/3 with g.f. x(1-x)/(1-2x-3x^2) corresponds to the (1,2) term of A^n. - Paul Barry, Oct 02 2004
The sequence corresponds to the (1,1) term of the matrix [1,2;2,1]^n. - Simone Severini, Dec 04 2004
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 4 times the bottom to get the new top. The limit of the sequence of fractions is 2. - Cino Hilliard, Sep 25 2005
a(n) is the number of compositions of n when there are 1 type of 1 and 4 types of other natural numbers. - Milan Janjic, Aug 13 2010
An elephant sequence, see A175655. For the central square just one A[5] vector, with decimal value 341, leads to this sequence (without the first leading 1). For the corner squares this vector leads to the companion sequence A015518 (without the leading 0). - Johannes W. Meijer, Aug 15 2010
Pisano period lengths: 1, 1, 2, 1, 4, 2, 6, 4, 2, 4, 10, 2, 6, 6, 4, 8, 16, 2, 18, 4, ... - R. J. Mathar, Aug 10 2012
a(n) is the number of words of length n over a ternary alphabet whose position in the lexicographic order is a multiple of two. - Alois P. Heinz, Apr 13 2022
|
|
REFERENCES
|
John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1-x)/((1+x)*(1-3*x)).
a(n) = (3^n + (-1)^n)/2.
a(n) = Sum_{k=0..n} binomial(n, 2k)2^(2k). - Paul Barry, Feb 26 2003
Binomial transform of A000302 (powers of 4) with interpolated zeros. Inverse binomial transform of A081294. - Paul Barry, Mar 17 2003
a(n) = ceiling(3^n/4) + floor(3^n/4) = ceiling(3^n/4)^2 - floor(3^n/4)^2. - Paul Barry, Jan 17 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n,j)C(n-j,k)*(1+(-1)^(j-k))/2. - Paul Barry, May 21 2006
((1 + sqrt4)^n + (1 - sqrt4)^n)/2. The offset is 0. a(3)=13. - Al Hakanson (hawkuu(AT)gmail.com), Nov 22 2008
If p[1]=1 and p[i]=4 (i > 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(4*k-1)/(x*(4*k+3) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
G.f.: G(0)/2, where G(k) = 1 + (-1)^k/(3^k - 3*9^k*x/(3*3^k*x + (-1)^k/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013
|
|
MAPLE
|
a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2] od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
seq(denom(((-2)^(2*n)+6^(2*n))/((-2)^n+6^n)), n=0..26)
|
|
MATHEMATICA
|
CoefficientList[ Series[(1 - x)/(1 - 2x - 3x^2), {x, 0, 30}], x] (* Robert G. Wilson v, Apr 04 2011 *)
Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Apr 04 2011 *)
|
|
PROG
|
(PARI) {a(n) = (3^n+(-1)^n)/2};
for(n=0, 30, print1(a(n), ", ")) /* modified by G. C. Greubel, Jan 07 2018 */
(Sage) [lucas_number2(n, 2, -3)/2 for n in range(0, 27)] # Zerinvary Lajos, Apr 30 2009
(Magma) [n le 2 select 1 else 2*Self(n-1)+3*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
(PARI) x='x+O('x^30); Vec((1-x)/((1+x)*(1-3*x))) \\ G. C. Greubel, Jan 07 2018
(Magma) [(3^n + (-1)^n)/2: n in [0..30]]; // G. C. Greubel, Jan 07 2018
|
|
CROSSREFS
|
The first difference sequence of A015518.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|