login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182300
Gaussian-Mersenne primes: primes of the form ((1+i)^p - 1)((1-i)^p - 1).
3
5, 13, 41, 113, 2113, 525313, 536903681, 140737471578113, 9444732965601851473921, 604462909806215075725313, 10384593717069655112945804582584321, 2854495385411919762116496381035264358442074113
OFFSET
1,1
COMMENTS
See A057429 for the values of p.
Primes of the form q = 2^p +- 2^((p+1)/2) + 1. Note that q == 1 (mod p). - Thomas Ordowski, Apr 18 2019
REFERENCES
John Brillhart et al., Factorizations of b^n +/- 1, b=2,3,5,6,7,10,12 up to high powers, Amer. Math. Soc., Providence RI, 1988, pp. xcvi+236.
R. K. Guy, Unsolved Problems in Number Theory, New York: Springer-Verlag, 1994, pp. 33-36.
Miriam Hausmann and Harold N. Shapiro, Perfect Ideals over the Gaussian Integers, Comm. Pure Appl. Math. 29 (1976), pp. 323-341.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..25
Bogley, William A.; Williams, Gerald Efficient finite groups arising in the study of relative asphericity. Math. Z. 284, No. 1-2, 507-535 (2016).
Chris Caldwell, The Prime Glossary, Gaussian Mersenne
C. K. Caldwell, "Top Twenty" page, Gaussian Mersenne norm
Ellen Gethner, Stan Wagon, and Brian Wick, A Stroll Through the Gaussian Primes, Amer. Math. Monthly 105 (1998), pp. 327-337.
W. L. McDaniel, Perfect Gaussian integers, Acta Arithmetica 25 (1974), pp. 137-144.
MATHEMATICA
lst = {}; Do[a = (1 + I)^n - 1; b = a*Conjugate[a]; If[PrimeQ[b], AppendTo[lst, b]], {n, 151}]; lst
gmp[n_]:=Module[{x=(1+I)^n-1}, x*Conjugate[x]]; Select[Table[gmp[n], {n, 200}], PrimeQ] (* Harvey P. Dale, Apr 27 2016 *)
CROSSREFS
Sequence in context: A200150 A287017 A229747 * A080925 A164907 A046717
KEYWORD
nice,nonn
AUTHOR
STATUS
approved