login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182300 Gaussian-Mersenne primes: primes of the form ((1+i)^p - 1)((1-i)^p - 1). 3
5, 13, 41, 113, 2113, 525313, 536903681, 140737471578113, 9444732965601851473921, 604462909806215075725313, 10384593717069655112945804582584321, 2854495385411919762116496381035264358442074113 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A057429 for the values of p.

Primes of the form q = 2^p +- 2^((p+1)/2) + 1. Note that q == 1 (mod p). - Thomas Ordowski, Apr 18 2019

REFERENCES

John Brillhart et al., Factorizations of b^n +/- 1, b=2,3,5,6,7,10,12 up to high powers, Amer. Math. Soc., Providence RI, 1988, pp. xcvi+236.

R. K. Guy, Unsolved Problems in Number Theory, New York: Springer-Verlag, 1994, pp. 33-36.

Miriam Hausmann and Harold N. Shapiro, Perfect Ideals over the Gaussian Integers, Comm. Pure Appl. Math. 29 (1976), pp. 323-341.

LINKS

Arkadiusz Wesolowski, Table of n, a(n) for n = 1..25

Chris Caldwell, The Prime Glossary, Gaussian Mersenne

C. K. Caldwell, "Top Twenty" page, Gaussian Mersenne norm

Ellen Gethner, Stan Wagon, and Brian Wick, A Stroll Through the Gaussian Primes, Amer. Math. Monthly 105 (1998), pp. 327-337.

W. L. McDaniel, Perfect Gaussian integers, Acta Arithmetica 25 (1974), pp. 137-144.

Index entries for Gaussian integers and primes

MATHEMATICA

lst = {}; Do[a = (1 + I)^n - 1; b = a*Conjugate[a]; If[PrimeQ[b], AppendTo[lst, b]], {n, 151}]; lst

gmp[n_]:=Module[{x=(1+I)^n-1}, x*Conjugate[x]]; Select[Table[gmp[n], {n, 200}], PrimeQ] (* Harvey P. Dale, Apr 27 2016 *)

CROSSREFS

Cf. A088962, A057429.

Sequence in context: A200150 A287017 A229747 * A046717 A080925 A164907

Adjacent sequences:  A182297 A182298 A182299 * A182301 A182302 A182303

KEYWORD

nice,nonn

AUTHOR

Arkadiusz Wesolowski, Apr 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 04:06 EDT 2019. Contains 323377 sequences. (Running on oeis4.)