OFFSET
0,1
COMMENTS
4^(2*n+1)+1 = 2^(2*(2*n+1))+1 = (2^(2*n+1)-2^(n+1)+1) * (2^(2*n+1)+2^(n+1)+1).
For all n, the smallest prime factor of 4^(2*n+1)+1 is 5.
Therefore, the present sequence also gives the largest prime factor of (4^(2*n+1)+1)/5 = A299960(n), for all n > 0. See A299959 for the smallest prime factor of this. - M. F. Hasler, Feb 27 2018
LINKS
Daniel Suteu, Table of n, a(n) for n = 0..547
FORMULA
EXAMPLE
For n=7, 4^(2*n+1)+1 = 1073741825 = 5*5*13*41*61*1321. So a(7)=1321.
MATHEMATICA
Table[FactorInteger[4^(2n+1)+1][[-1, 1]], {n, 0, 30}] (* Harvey P. Dale, Mar 10 2018 *)
PROG
(PARI) a(n) = {
f=factor(2^(2*n+1)-2^(n+1)+1);
g=factor(2^(2*n+1)+2^(n+1)+1);
max(f[matsize(f)[1], 1], g[matsize(g)[1], 1])
}
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Barker, Sep 28 2013
STATUS
approved