login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299959
Least prime factor of (4^(2n+1)+1)/5, a(0) = 1.
3
1, 13, 5, 29, 13, 397, 53, 5, 137, 229, 13, 277, 5, 13, 107367629, 5581, 13, 5, 149, 13, 10169, 173, 5, 3761, 29, 13, 15358129, 5, 13, 1181, 733, 13, 5, 269, 13, 569, 293, 5, 29, 317, 13, 997, 5, 13, 1069, 29, 13, 5, 389, 13, 809, 41201, 5, 857, 5669, 13, 58309, 5, 13, 29, 397, 13, 5, 509, 13
OFFSET
0,2
LINKS
FORMULA
a(n) = A020639(A299960(n)) = A020639(A052539(2n+1)/5).
a(n) = 5 iff n = 2 (mod 5); otherwise, a(n) = 13 if n = 1 (mod 3).
EXAMPLE
For n = 0, A299960(0) = (4^1+1)/5 = 5/5 = 1, therefore we let a(0) = 1.
For n = 1, A299960(1) = (4^3+1)/5 = 65/5 = 13 is prime, therefore a(1) = 13.
For n = 2, A299960(2) = (4^5+1)/5 = 1025/5 = 205 = 5*41, therefore a(2) = 5.
PROG
(PARI) a(n)=A020639(4^(2*n+1)\5+1). \\ Using factor(...)[1, 1] requires complete factorization and is much less efficient for large n.
CROSSREFS
Sequence in context: A235366 A166207 A121230 * A278445 A157799 A240121
KEYWORD
nonn
AUTHOR
M. F. Hasler, Feb 22 2018
STATUS
approved