login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299960 a(n) = ( 4^(2*n+1) + 1 )/5. 8
1, 13, 205, 3277, 52429, 838861, 13421773, 214748365, 3435973837, 54975581389, 879609302221, 14073748835533, 225179981368525, 3602879701896397, 57646075230342349, 922337203685477581, 14757395258967641293, 236118324143482260685, 3777893186295716170957 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

It is easily seen that 4^(2n+1)+1 is divisible by 5 for all n, since 4 = -1 (mod 5). For even powers this does not hold.

The aerated sequence 1, 0, 13, 0, 205, 0, 3277, ... is a linear divisibility sequence of order 4. It is the case P1 = 0, P2 = -5^2, Q = 4 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. Cf. A007583, A095372 and A100706. - Peter Bala, Aug 28 2019

Let G be a sequence satisfying G(i) = 2*G(i-1) + G(i-2) - 2*G(i-3) for arbitrary integers i and without regard to the initial values of G. Then a(n) = (G(i)*2^(4*n+2) + G(i+8*n+4))/(5*G(i+4*n+2)) as long as G(i+4*n+2) != 0. - Klaus Purath, Feb 02 2021

LINKS

Table of n, a(n) for n=0..18.

H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.

Index entries for linear recurrences with constant coefficients, signature (17,-16).

FORMULA

a(n) = A052539(2*n+1)/5 = A015521(2*n+1) = A014985(2*n+1) = A007910(4*n+1) = A007909(4*n+1) = A207262(n+1)/5.

O.g.f.: (1 - 4*x)/(1 - 17*x + 16*x^2). - Peter Bala, Aug 28 2019

a(n) = 17*a(n-1) - 16*a(n-2). - Wesley Ivan Hurt, Oct 02 2020

From Klaus Purath, Feb 02 2021: (Start)

a(n) = (2^(4*n+2)+1)/5.

a(n) = (A061654(n) + A001025(n))/2.

a(n) = A091881(n+1) + 7*A131865(n-1) for n > 0.

(End)

E.g.f.: (exp(x) + 4*exp(16*x))/5. - Stefano Spezia, Feb 02 2021

EXAMPLE

For n = 0, a(0) = (4^1+1)/5 = 5/5 = 1.

For n = 1, a(1) = (4^3+1)/5 = 65/5 = 13.

MAPLE

A299960 := n -> (4^(2*n+1)+1)/5: seq(A299960(n), n=0..20);

MATHEMATICA

LinearRecurrence[{17, -16}, {1, 13}, 20] (* Jean-François Alcover, Feb 22 2018 *)

PROG

(PARI) A299960(n)=4^(2*n+1)\5+1

(Python)

def A299960(n): return ((1<<(n<<2)+2)+1)//5 # Chai Wah Wu, Jul 29 2022

CROSSREFS

Cf. A299959 for the smallest prime factor.

Cf. A052539, A007583, A095372, A100706.

Sequence in context: A057807 A057804 A215621 * A194727 A059355 A243783

Adjacent sequences: A299957 A299958 A299959 * A299961 A299962 A299963

KEYWORD

nonn

AUTHOR

M. F. Hasler, Feb 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 6 03:21 EST 2023. Contains 360091 sequences. (Running on oeis4.)