

A299960


a(n) = ( 4^(2*n+1) + 1 )/5.


8



1, 13, 205, 3277, 52429, 838861, 13421773, 214748365, 3435973837, 54975581389, 879609302221, 14073748835533, 225179981368525, 3602879701896397, 57646075230342349, 922337203685477581, 14757395258967641293, 236118324143482260685, 3777893186295716170957
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

It is easily seen that 4^(2n+1)+1 is divisible by 5 for all n, since 4 = 1 (mod 5). For even powers this does not hold.
The aerated sequence 1, 0, 13, 0, 205, 0, 3277, ... is a linear divisibility sequence of order 4. It is the case P1 = 0, P2 = 5^2, Q = 4 of the 3parameter family of 4thorder linear divisibility sequences found by Williams and Guy. Cf. A007583, A095372 and A100706.  Peter Bala, Aug 28 2019
Let G be a sequence satisfying G(i) = 2*G(i1) + G(i2)  2*G(i3) for arbitrary integers i and without regard to the initial values of G. Then a(n) = (G(i)*2^(4*n+2) + G(i+8*n+4))/(5*G(i+4*n+2)) as long as G(i+4*n+2) != 0.  Klaus Purath, Feb 02 2021


LINKS

Table of n, a(n) for n=0..18.
H. C. Williams and R. K. Guy, Some fourthorder linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 12551277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
Index entries for linear recurrences with constant coefficients, signature (17,16).


FORMULA

a(n) = A052539(2*n+1)/5 = A015521(2*n+1) = A014985(2*n+1) = A007910(4*n+1) = A007909(4*n+1) = A207262(n+1)/5.
O.g.f.: (1  4*x)/(1  17*x + 16*x^2).  Peter Bala, Aug 28 2019
a(n) = 17*a(n1)  16*a(n2).  Wesley Ivan Hurt, Oct 02 2020
From Klaus Purath, Feb 02 2021: (Start)
a(n) = (2^(4*n+2)+1)/5.
a(n) = (A061654(n) + A001025(n))/2.
a(n) = A091881(n+1) + 7*A131865(n1) for n > 0.
(End)
E.g.f.: (exp(x) + 4*exp(16*x))/5.  Stefano Spezia, Feb 02 2021


EXAMPLE

For n = 0, a(0) = (4^1+1)/5 = 5/5 = 1.
For n = 1, a(1) = (4^3+1)/5 = 65/5 = 13.


MAPLE

A299960 := n > (4^(2*n+1)+1)/5: seq(A299960(n), n=0..20);


MATHEMATICA

LinearRecurrence[{17, 16}, {1, 13}, 20] (* JeanFrançois Alcover, Feb 22 2018 *)


PROG

(PARI) A299960(n)=4^(2*n+1)\5+1
(Python)
def A299960(n): return ((1<<(n<<2)+2)+1)//5 # Chai Wah Wu, Jul 29 2022


CROSSREFS

Cf. A299959 for the smallest prime factor.
Cf. A052539, A007583, A095372, A100706.
Sequence in context: A057807 A057804 A215621 * A194727 A059355 A243783
Adjacent sequences: A299957 A299958 A299959 * A299961 A299962 A299963


KEYWORD

nonn


AUTHOR

M. F. Hasler, Feb 22 2018


STATUS

approved



