



1, 111, 11111, 1111111, 111111111, 11111111111, 1111111111111, 111111111111111, 11111111111111111, 1111111111111111111, 111111111111111111111, 11111111111111111111111
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Also the binary representation of the nth iteration of the elementary cellular automaton starting with a single ON (black) cell for Rules 151, 159, 183, 191, 215, 222, 223, 247, 254 and 255.  Robert Price, Feb 21 2016
The aerated sequence 1, 0, 111, 0, 11111, 0, 1111111, ... is a linear divisibility sequence of order 4. It is the case P1 = 0, P2 = 9^2, Q = 10 of the 3parameter family of 4thorder linear divisibility sequences found by Williams and Guy. Cf. A007583, A095372 and A299960.  Peter Bala, Aug 28 2019


REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.


LINKS

Table of n, a(n) for n=0..11.
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
H. C. Williams and R. K. Guy, Some fourthorder linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 12551277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
S. Wolfram, A New Kind of Science
Index to Elementary Cellular Automata
Index entries for sequences related to cellular automata


FORMULA

1 repeated 2n+1 times.
O.g.f.: (1+10x)/[(1+x)(1+100x)].  R. J. Mathar, Apr 03 2008


MAPLE

seq((10^(2*n+1)  1)/9, n=0..15); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005


MATHEMATICA

Table[(10^(2*n + 1)  1)/9, {n, 0, 100}] (* Robert Price, Feb 21 2016 *)


CROSSREFS

Cf. A007583, A095372, A299960.
Sequence in context: A265379 A265688 A138146 * A259102 A262629 A111864
Adjacent sequences: A100703 A100704 A100705 * A100707 A100708 A100709


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Nov 19 2004


EXTENSIONS

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005


STATUS

approved



