login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164907 a(n) = (3*3^n-(-1)^n)/2. 3
1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Interleaving of A096053 and A083884 without initial term 1.

Partial sums are (essentially) in A080926.

First differences are (essentially) in A105723.

a(n)+a(n+1) = A008776(n+1) = A099856(n+1) = A110593(n+2).

Binomial transform of A164906. Inverse binomial transform of A164908.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (2,3).

FORMULA

a(n) = 2*a(n-1)+3*a(n-2) for n > 1; a(0) = 1, a(1) = 5.

G.f.: (1+3*x)/((1+x)*(1-3*x)).

a(n) = 3*a(n-1)+2*(-1)^n. - Carmine Suriano, Mar 21 2014

MAPLE

A164907:=n->(3*3^n - (-1)^n)/2; seq(A164907(n), n=0..30); # Wesley Ivan Hurt, Mar 21 2014

MATHEMATICA

Table[(3*3^n - (-1)^n)/2, {n, 0, 30}] (* Wesley Ivan Hurt, Mar 21 2014 *)

LinearRecurrence[{2, 3}, {1, 5}, 50] (* Harvey P. Dale, Oct 31 2018 *)

PROG

(MAGMA) [ (3*3^n-(-1)^n)/2: n in [0..25] ];

CROSSREFS

Equals A046717 without initial term 1 and A080925 without initial term 0. Equals A084182 / 2 from second term onward.

Cf. A096053, A083884, A080926, A105723, A008776, A099856, A110593, A164906, A164908.

Sequence in context: A182300 A046717 A080925 * A085601 A147718 A111009

Adjacent sequences:  A164904 A164905 A164906 * A164908 A164909 A164910

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Aug 31 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 20:35 EDT 2019. Contains 327087 sequences. (Running on oeis4.)