This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164907 a(n) = (3*3^n-(-1)^n)/2. 3
 1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Interleaving of A096053 and A083884 without initial term 1. Partial sums are (essentially) in A080926. First differences are (essentially) in A105723. a(n)+a(n+1) = A008776(n+1) = A099856(n+1) = A110593(n+2). Binomial transform of A164906. Inverse binomial transform of A164908. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (2,3). FORMULA a(n) = 2*a(n-1)+3*a(n-2) for n > 1; a(0) = 1, a(1) = 5. G.f.: (1+3*x)/((1+x)*(1-3*x)). a(n) = 3*a(n-1)+2*(-1)^n. - Carmine Suriano, Mar 21 2014 MAPLE A164907:=n->(3*3^n - (-1)^n)/2; seq(A164907(n), n=0..30); # Wesley Ivan Hurt, Mar 21 2014 MATHEMATICA Table[(3*3^n - (-1)^n)/2, {n, 0, 30}] (* Wesley Ivan Hurt, Mar 21 2014 *) LinearRecurrence[{2, 3}, {1, 5}, 50] (* Harvey P. Dale, Oct 31 2018 *) PROG (MAGMA) [ (3*3^n-(-1)^n)/2: n in [0..25] ]; CROSSREFS Equals A046717 without initial term 1 and A080925 without initial term 0. Equals A084182 / 2 from second term onward. Cf. A096053, A083884, A080926, A105723, A008776, A099856, A110593, A164906, A164908. Sequence in context: A182300 A046717 A080925 * A085601 A147718 A111009 Adjacent sequences:  A164904 A164905 A164906 * A164908 A164909 A164910 KEYWORD nonn,easy AUTHOR Klaus Brockhaus, Aug 31 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 20:35 EDT 2019. Contains 327087 sequences. (Running on oeis4.)