OFFSET
4,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 4..1000
S. Ekhad, A. Robertson, D. Zeilberger, The number of permutations with a prescribed number of 132 and 123 patterns, arXiv:math/9903170 [math.CO], 1999.
Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
FORMULA
G.f.: -x^4*(x^3-6*x^2+4*x-1)/(2*x-1)^4.
a(n) = 2^(n-8)*(n^3-11*n^2+54*n-88). - R. J. Mathar, Oct 02 2012
EXAMPLE
a(4) = 1: 1324.
a(5) = 4: 24315, 24351, 41325, 51324.
a(6) = 14: 354216, 354261, 354612, 354621, 435162, 462135, 524316, 524361, 541326, 561324, 624315, 624351, 641325, 651324.
MAPLE
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-16|32|-24|8>>^(n-4).
<<1, 4, 14, 47>>)[1, 1]:
seq(a(n), n=4..30); # Alois P. Heinz, Oct 01 2012
MATHEMATICA
LinearRecurrence[{8, -24, 32, -16}, {1, 4, 14, 47}, 30] (* Jean-François Alcover, Aug 18 2018 *)
PROG
(Sage)
def LinearRecurrence4(a0, a1, a2, a3, a4, a5, a6, a7):
x, y, z, u = Integer(a0), Integer(a1), Integer(a2), Integer(a3)
yield x
while True:
x, y, z, u = y, z, u, a7*x+a6*y+a5*z+a4*u
yield x
A046718 = LinearRecurrence4(1, 4, 14, 47, 8, -24, 32, -16)
[next(A046718) for i in range(29)] # Peter Luschny, Oct 02 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited at the suggestion of R. J. Mathar by Alois P. Heinz, Oct 01 2012
STATUS
approved