login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121530
Number of double rises at an odd level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
2
0, 1, 4, 14, 47, 148, 454, 1359, 4004, 11644, 33521, 95696, 271300, 764605, 2143964, 5985186, 16643779, 46124692, 127433562, 351106955, 964976460, 2646158176, 7241414949, 19779499584, 53933402472, 146828245753, 399137621524
OFFSET
1,3
COMMENTS
a(n)=Sum(k*A121529(n,k), k>=0). a(n)+A121532(n)=A054444(n-2).
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
G.f.=z^2*(1-2z-z^2+4z^3-3z^4)/[(1+z)(1-3z+z^2)^2*(1-z-z^2)].
a(n) ~ (3-sqrt(5)) * (3+sqrt(5))^n * n / (5 * 2^(n+1)). - Vaclav Kotesovec, Mar 20 2014
Equivalently, a(n) ~ phi^(2*n-2) * n / 5, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021
EXAMPLE
a(3)=4 because we have UDUDUD, UDU/UDD, U/UDDUD, U/UDUDD and U/UUDDD, the double rises at an odd level being indicated by a / (U=(1,1), D=(1,-1)).
MAPLE
g:=z^2*(1-2*z-z^2+4*z^3-3*z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): gser:=series(g, z=0, 33): seq(coeff(gser, z, n), n=1..30);
MATHEMATICA
Rest[CoefficientList[Series[x^2*(1-2*x-x^2+4*x^3-3*x^4)/(1+x)/(1-3*x+x^2)^2 /(1-x-x^2), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 05 2006
STATUS
approved