OFFSET
0,2
COMMENTS
Empirical: a(base, n) = a(base-1, n) + A005191(n+1) for base >= 2*floor(n/2) + 1 where base is the number of letters in the alphabet.
Sequence appears to have generating function (1-x^2-4*x^3)/((1-x)*(1-3*x-2*x^2)). The degree of the numerator would drop by one if the initial term were changed from 1 to 3: (3-8*x+x^2)/((1-x)*(1-3*x-2*x^2)). - Creighton Dement, Aug 20 2007
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-1,-2).
FORMULA
a(n) = 1 + A206776(n) for n > 0. - Bruno Berselli, Jan 11 2013
From Colin Barker, Jun 02 2017: (Start)
G.f.: (1 - x^2 - 4*x^3) / ((1 - x)*(1 - 3*x - 2*x^2)).
a(n) = 1 + ((3-sqrt(17))/2)^n + ((3+sqrt(17))/2)^n for n>0.
a(n) = 4*a(n-1) - a(n-2) - 2*a(n-3) for n > 3. (End)
MATHEMATICA
LinearRecurrence[{4, -1, -2}, {1, 4, 14, 46}, 40] (* G. C. Greubel, Aug 03 2023 *)
PROG
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-1](($[i]`-$[(i+1)mod N]`>2)+($[(i+1)mod N]`-$[i]`>2))
(Magma) I:=[1, 4, 14, 46]; [n le 4 select I[n] else 4*Self(n-1) -Self(n-2) -2*Self(n-3): n in [1..40]]; // G. C. Greubel, Aug 03 2023
(SageMath)
A206776=BinaryRecurrenceSequence(3, 2, 2, 3)
[1+A206776(n) -2*int(n==0) for n in range(41)] # G. C. Greubel, Aug 03 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Dec 28 2006
STATUS
approved