login
A124808
Number of numbers k <= n such that k^2 + 1 is squarefree.
3
1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 61, 62, 62, 63, 64
OFFSET
0,2
LINKS
FORMULA
a(0) = 1, a(n) = a(n-1) + 0^(A059592(n) - 1).
a(n) = Sum_{k=0..n} mu(k^2+1)^2, where mu(n) is the Mobius function (A008683). - Wesley Ivan Hurt, Jul 15 2015
a(n) ~ c*n where c = Product_{p prime, p == 1 (mod 4)} (1 - 2/p^2) = 0.894841... (A335963). - Amiram Eldar, Feb 23 2021
MAPLE
ListTools:-PartialSums([seq(numtheory:-mobius(k^2+1)^2, k=0..100)]); # Robert Israel, Jul 15 2015
MATHEMATICA
Accumulate[Table[If[SquareFreeQ[k^2+1], 1, 0], {k, 0, 80}]] (* Harvey P. Dale, Mar 04 2014 *)
Table[Sum[MoebiusMu[k^2 + 1]^2, {k, 0, n}], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 15 2015 *)
PROG
(PARI) a(n)={my(k, r=0); for(k=0, n, if(issquarefree(k^2+1), r++)); return(r); }
main(size)=my(n); vector(size, n, a(n-1)) /* Anders Hellström, Jul 15 2015 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Nov 08 2006
STATUS
approved