login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124807
Number of base-6 circular n-digit numbers with adjacent digits differing by 2 or less.
5
1, 6, 24, 84, 332, 1336, 5478, 22658, 94196, 392664, 1639274, 6849002, 28627874, 119688094, 500456806, 2092720174, 8751273556, 36596513060, 153042707976, 640011807436, 2676483843602, 11192882945426, 46807955443900
OFFSET
0,2
COMMENTS
[Empirical] a(base,n) = a(base-1,n) + A005191(n+1) for base >= 2*floor(n/2) + 1.
FORMULA
From Colin Barker, Jun 04 2017: (Start)
G.f.: (1 - 6*x^2 - 16*x^3 + 15*x^4 + 8*x^5 - 5*x^6) / ((1 - 4*x - x^2 + x^3)*(1 - 2*x - x^2 + x^3)).
a(n) = 6*a(n-1) - 6*a(n-2) - 8*a(n-3) + 5*a(n-4) + 2*a(n-5) - a(n-6) for n > 6.
(End)
a(n) = -5*[n=0] + 3*A006054(n+2) - 4*A006054(n+1) - A006054(n) + 3*A364705(n) - 8*A364705(n-1) - A364705(n-2). - G. C. Greubel, Aug 04 2023
MATHEMATICA
LinearRecurrence[{6, -6, -8, 5, 2, -1}, {1, 6, 24, 84, 332, 1336, 5478}, 35] (* G. C. Greubel, Aug 04 2023 *)
PROG
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-1](($[i]`-$[(i+1)mod N]`>2)+($[(i+1)mod N]`-$[i]`>2))
(Magma) I:=[1, 6, 24, 84, 332, 1336, 5478]; [n le 7 select I[n] else 6*Self(n-1) -6*Self(n-2) -8*Self(n-3) +5*Self(n-4) +2*Self(n-5) -Self(n-6): n in [1..41]]; // G. C. Greubel, Aug 04 2023
(SageMath)
@CachedFunction
def a(n): # a = A124807
if (n<7): return (1, 6, 24, 84, 332, 1336, 5478)[n]
else: return 6*a(n-1) -6*a(n-2) -8*a(n-3) +5*a(n-4) +2*a(n-5) -a(n-6)
[a(n) for n in range(41)] # G. C. Greubel, Aug 04 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Dec 28 2006
STATUS
approved