login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364705
Expansion of 1/(1 - 4*x - x^2 + x^3).
3
1, 4, 17, 71, 297, 1242, 5194, 21721, 90836, 379871, 1588599, 6643431, 27782452, 116184640, 485877581, 2031912512, 8497342989, 35535406887, 148607058025, 621466295998, 2598936835130, 10868606578493, 45451896853104, 190077257155779, 794892318897727, 3324194635893583
OFFSET
0,2
FORMULA
G.f.: 1/(1 - 4*x - x^2 + x^3).
a(n) = 4*a(n-1) + a(n-2) - a(n-3).
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n-k, j)*binomial(n-k, k-j)* 4^(n-2*k)*((1-sqrt(17))/2)^(k-j)*(1+sqrt(17))/2)^j.
MATHEMATICA
LinearRecurrence[{4, 1, -1}, {1, 4, 17}, 41]
PROG
(Magma) I:=[1, 4, 17]; [n le 3 select I[n] else 4*Self(n-1) +Self(n-2) -Self(n-3): n in [1..41]];
(SageMath)
@CachedFunction
def a(n): # a = A364705
if (n<3): return (1, 4, 17)[n]
else: return 4*a(n-1) +a(n-2) -a(n-3)
[a(n) for n in range(41)]
CROSSREFS
Sequence in context: A017956 A136792 A188482 * A179606 A108929 A297578
KEYWORD
nonn
AUTHOR
G. C. Greubel, Aug 04 2023
STATUS
approved