login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326346
Total number of partitions in the partitions of compositions of n.
5
0, 1, 4, 14, 47, 151, 474, 1457, 4414, 13210, 39155, 115120, 336183, 976070, 2819785, 8110657, 23239662, 66362960, 188930728, 536407146, 1519205230, 4293061640, 12106883585, 34079016842, 95762829405, 268670620736, 752676269695, 2105751165046, 5883798478398
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} k * A060642(n,k).
a(n) ~ c * d^n * n, where d = A246828 = 2.69832910647421123126399866618837633... and c = 0.171490233695958246364725709205670983251448838158816... - Vaclav Kotesovec, Sep 14 2019
EXAMPLE
a(3) = 14 = 1+1+1+2+2+2+2+3 counts the partitions in 3, 21, 111, 2|1, 11|1, 1|2, 1|11, 1|1|1.
MAPLE
b:= proc(n) option remember; `if`(n=0, [1, 0], (p-> p+
[0, p[1]])(add(combinat[numbpart](j)*b(n-j), j=1..n)))
end:
a:= n-> b(n)[2]:
seq(a(n), n=0..32);
MATHEMATICA
b[n_] := b[n] = If[n==0, {1, 0}, Function[p, p + {0, p[[1]]}][Sum[ PartitionsP[j] b[n-j], {j, 1, n}]]];
a[n_] := b[n][[2]];
a /@ Range[0, 32] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 11 2019
STATUS
approved