OFFSET
0,3
LINKS
Robert Brignall, Jakub Sliacan, Combinatorial specifications for juxtapositions of permutation classes, arXiv:1902.02705 [math.CO], 2019.
FORMULA
G.f.: (2-4*z+z^2)*x*y/(4*(1-z)*(-2+7*z-7*z^2+z^3)) + ((-2+10*z-15*z^2+7*z^3)*x + (2-6*z+z^2+6*z^3-z^4)*y - 10+54*z-99*z^2+66*z^3-9z^4)/(4*(1-z)^2*(-2+7*z-7*z^2+z^3)) where x=sqrt(1-6*z+z^2) and y=sqrt(1-8*z+8z^2).
a(n) ~ (63 + 8*sqrt(2) + 3*sqrt(41 + 40*sqrt(2))) * 2^(3*n/2 - 1) * (1 + sqrt(2))^(n - 1/2) / (sqrt(Pi) * (73 + 53*sqrt(2)) * n^(3/2)). - Vaclav Kotesovec, Jul 07 2024
EXAMPLE
There are a(5) = 115 permutations of length 5 which can be expressed as a juxtaposition of a separable permutation (avoiding 2413 and 3142) with an increasing permutation. These 5 cannot be expressed: 25143, 35142, 35241, 41532 and 42531.
MATHEMATICA
CoefficientList[Series[(Sqrt[1 - 6*x + x^2]*(2 - 4*x + x^2)*Sqrt[1 - 8*x + 8*x^2]) / (4*(1 - x)*(-2 + 7*x - 7*x^2 + x^3)) + (-10 + 54*x - 99*x^2 + 66*x^3 - 9*x^4 + Sqrt[1 - 6*x + x^2]*(-2 + 10*x - 15*x^2 + 7*x^3) + Sqrt[1 - 8*x + 8*x^2]*(2 - 6*x + x^2 + 6*x^3 - x^4))/(4*(1 - x)^2*(-2 + 7*x - 7*x^2 + x^3)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 07 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Brignall, Sep 11 2019
STATUS
approved