login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326348
Number of permutations of length n in the class of juxtapositions of separable permutations with 21-avoiders.
0
1, 1, 2, 6, 24, 115, 609, 3409, 19728, 116692, 701062, 4261581, 26146111, 161631115, 1005522262, 6289410686, 39525228204, 249427451071, 1579885391573, 10040587733693, 64004713573508, 409139527503760, 2622049900367018, 16843666877986873, 108438876033442579
OFFSET
0,3
LINKS
Robert Brignall, Jakub Sliacan, Combinatorial specifications for juxtapositions of permutation classes, arXiv:1902.02705 [math.CO], 2019.
FORMULA
G.f.: (2-4*z+z^2)*x*y/(4*(1-z)*(-2+7*z-7*z^2+z^3)) + ((-2+10*z-15*z^2+7*z^3)*x + (2-6*z+z^2+6*z^3-z^4)*y - 10+54*z-99*z^2+66*z^3-9z^4)/(4*(1-z)^2*(-2+7*z-7*z^2+z^3)) where x=sqrt(1-6*z+z^2) and y=sqrt(1-8*z+8z^2).
a(n) ~ (63 + 8*sqrt(2) + 3*sqrt(41 + 40*sqrt(2))) * 2^(3*n/2 - 1) * (1 + sqrt(2))^(n - 1/2) / (sqrt(Pi) * (73 + 53*sqrt(2)) * n^(3/2)). - Vaclav Kotesovec, Jul 07 2024
EXAMPLE
There are a(5) = 115 permutations of length 5 which can be expressed as a juxtaposition of a separable permutation (avoiding 2413 and 3142) with an increasing permutation. These 5 cannot be expressed: 25143, 35142, 35241, 41532 and 42531.
MATHEMATICA
CoefficientList[Series[(Sqrt[1 - 6*x + x^2]*(2 - 4*x + x^2)*Sqrt[1 - 8*x + 8*x^2]) / (4*(1 - x)*(-2 + 7*x - 7*x^2 + x^3)) + (-10 + 54*x - 99*x^2 + 66*x^3 - 9*x^4 + Sqrt[1 - 6*x + x^2]*(-2 + 10*x - 15*x^2 + 7*x^3) + Sqrt[1 - 8*x + 8*x^2]*(2 - 6*x + x^2 + 6*x^3 - x^4))/(4*(1 - x)^2*(-2 + 7*x - 7*x^2 + x^3)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 07 2024 *)
CROSSREFS
Other juxtapositions of algebraic classes with monotone ones are enumerated by A033321, A165538, and A278301.
Sequence in context: A216717 A174072 A224255 * A128088 A069657 A369766
KEYWORD
nonn
AUTHOR
Robert Brignall, Sep 11 2019
STATUS
approved