login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165538
Number of permutations of length n which avoid the patterns 4312 and 3142.
3
1, 1, 2, 6, 22, 88, 367, 1568, 6810, 29943, 132958, 595227, 2683373, 12170778, 55499358, 254297805, 1170248190, 5406570910, 25068420955, 116617923611, 544157590706, 2546278167018, 11945937322413, 56180864428301, 264812677643417, 1250853429148333, 5920145717412047
OFFSET
0,3
LINKS
M. H. Albert, M. D. Atkinson, and V. Vatter, Inflations of geometric grid classes: three case studies, arXiv:1209.0425 [math.CO], 2012.
Christian Bean, Finding structure in permutation sets, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018.
Christian Bean, Émile Nadeau, Henning Ulfarsson, Enumeration of Permutation Classes and Weighted Labelled Independent Sets, arXiv:1912.07503 [math.CO], 2019.
Robert Brignall, Jakub Sliacan, Juxtaposing Catalan permutation classes with monotone ones, arXiv:1611.05370 [math.CO], 2016.
Juan B. Gil, Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018.
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
FORMULA
G.f. f satisfies: (x^3-2*x^2+x)*f^4+(4*x^3-9*x^2+6*x-1)*f^3+(6*x^3-12*x^2+7*x-1)*f^2+(4*x^3-5*x^2+x)*f+x^3 = 0.
From Vaclav Kotesovec, Jul 06 2024: (Start)
G.f.: (1 + sqrt(1-4*x)) / (4*x) - sqrt(2*(1 + sqrt(1-4*x)-2*x)*(1-x)*(1-5*x)) / (4*(1-x)*x).
a(n) ~ (1 + sqrt(5)) * 5^(n+1) / (16 * sqrt(Pi) * n^(3/2)). (End)
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[(1 + Sqrt[1 - 4*x]) / (4*x) - Sqrt[2*(1 + Sqrt[1 - 4*x] - 2*x)*(1 - x)*(1 - 5*x)] / (4*(1-x)*x), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 06 2024 *)
CROSSREFS
Sequence in context: A165536 A032351 A165537 * A165539 A109033 A049135
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
Reference corrected by Vincent Vatter, Sep 04 2012
a(0)=1 prepended by Alois P. Heinz, Jul 06 2024
STATUS
approved