OFFSET
0,3
LINKS
M. H. Albert, M. D. Atkinson, and V. Vatter, Inflations of geometric grid classes: three case studies, arXiv:1209.0425 [math.CO], 2012.
Christian Bean, Finding structure in permutation sets, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018.
Christian Bean, Émile Nadeau, Henning Ulfarsson, Enumeration of Permutation Classes and Weighted Labelled Independent Sets, arXiv:1912.07503 [math.CO], 2019.
Robert Brignall, Jakub Sliacan, Juxtaposing Catalan permutation classes with monotone ones, arXiv:1611.05370 [math.CO], 2016.
Juan B. Gil, Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018.
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
FORMULA
G.f. f satisfies: (x^3-2*x^2+x)*f^4+(4*x^3-9*x^2+6*x-1)*f^3+(6*x^3-12*x^2+7*x-1)*f^2+(4*x^3-5*x^2+x)*f+x^3 = 0.
From Vaclav Kotesovec, Jul 06 2024: (Start)
G.f.: (1 + sqrt(1-4*x)) / (4*x) - sqrt(2*(1 + sqrt(1-4*x)-2*x)*(1-x)*(1-5*x)) / (4*(1-x)*x).
a(n) ~ (1 + sqrt(5)) * 5^(n+1) / (16 * sqrt(Pi) * n^(3/2)). (End)
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[(1 + Sqrt[1 - 4*x]) / (4*x) - Sqrt[2*(1 + Sqrt[1 - 4*x] - 2*x)*(1 - x)*(1 - 5*x)] / (4*(1-x)*x), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 06 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
Reference corrected by Vincent Vatter, Sep 04 2012
a(0)=1 prepended by Alois P. Heinz, Jul 06 2024
STATUS
approved