login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165535
Number of permutations of length n which avoid the patterns 4231 and 3124.
1
1, 1, 2, 6, 22, 88, 363, 1508, 6255, 25842, 106327, 435965, 1782733, 7275351, 29648647, 120707058, 491113791, 1997372920, 8121565606, 33020039047, 134248625367, 545835561195, 2219474787024, 9025797884775, 36709145207578, 149320519008554, 607466672855393
OFFSET
0,3
REFERENCES
Kremer, Darla and Shiu, Wai Chee; Finite transition matrices for permutations avoiding pairs of length four patterns. Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
FORMULA
G.f.: 1+(1-8*x+20*x^2-20*x^3+10*x^4-2*x^5-(1-4*x+2*x^2)*sqrt(1-4*x)) / (2*(1-3*x+x^2)*(-1+5*x-4*x^2+x^3)).
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[1+(1-8*x+20*x^2-20*x^3+10*x^4-2*x^5-(1-4*x+ 2*x^2 )*Sqrt[1-4*x])/(2*(1-3*x+x^2)*(-1+5*x-4*x^2+x^3)), {x, 0, 30}], x] (* G. C. Greubel, Oct 22 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(1+(1-8*x+20*x^2-20*x^3+10*x^4-2*x^5-(1-4*x +2*x^2)*sqrt(1-4*x))/(2*(1-3*x+x^2)*(-1+5*x-4*x^2+x^3))) \\ G. C. Greubel, Oct 22 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1+(1-8*x+20*x^2-20*x^3+10*x^4-2*x^5-(1-4*x+2*x^2)*Sqrt(1-4*x)) / (2*(1-3*x+x^2)*(-1+5*x-4*x^2+x^3)))); // G. C. Greubel, Oct 22 2018
CROSSREFS
Sequence in context: A363811 A150263 A165534 * A319028 A165536 A032351
KEYWORD
nonn,easy
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
More terms, g.f., and reference by Vincent Vatter, Sep 04 2012
a(0)=1 prepended by Alois P. Heinz, Feb 18 2016
STATUS
approved