login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165533
Number of permutations of length n which avoid the patterns 4213 and 1432.
1
1, 1, 2, 6, 22, 87, 352, 1434, 5861, 24019, 98677, 406291, 1676009, 6924618, 28646875, 118638038, 491765865, 2039944740, 8467475533, 35166107745, 146115418937, 607353499821, 2525443862594, 10504254304765, 43702642447260, 181865873468907, 756979080521743, 3151341504417932
OFFSET
0,3
LINKS
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
Sam Miner, Enumeration of several two-by-four classes, arXiv:1610.01908 [math.CO], 2016.
FORMULA
G.f.: 1 + x*(1 - x)*(1 - 2*x)*(1 - 7*x + 17*x^2 - 16*x^3 + 4*x^4 + (1 - 3*x + 3*x^2)*sqrt(1 - 4*x))/(2 - 22*x + 96*x^2 - 220*x^3 + 282*x^4 - 196*x^5 + 64*x^6 - 8*x^7). - G. C. Greubel, Oct 22 2018
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[1 + x*(1 - x)*(1 - 2*x)*(1 - 7*x + 17*x^2 - 16*x^3 + 4*x^4 + (1 - 3*x + 3*x^2)*Sqrt[1 - 4*x])/(2 - 22*x + 96*x^2 - 220*x^3 + 282*x^4 - 196*x^5 + 64*x^6 - 8*x^7), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
PROG
(PARI) x='x+O('x^50); Vec(1 + x*(1-x)*(1-2*x)*(1-7*x+17*x^2-16*x^3+4*x^4 + (1-3*x+3*x^2)*sqrt(1-4*x))/(2-22*x+96*x^2-220*x^3+282*x^4-196*x^5 + 64*x^6-8*x^7)) \\ G. C. Greubel, Oct 22 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1 + x*(1-x)*(1-2*x)*(1-7*x+17*x^2-16*x^3+4*x^4 +(1-3*x + 3*x^2)*Sqrt(1 - 4*x))/(2-22*x+96*x^2-220*x^3+282*x^4-196*x^5+64*x^6-8*x^7))); // G. C. Greubel, Oct 22 2018
CROSSREFS
Sequence in context: A374542 A150260 A165532 * A164651 A279566 A367413
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 09 2015
a(13)-a(15) from Lars Blomberg, Apr 26 2018
Terms a(16) onward added by G. C. Greubel, Oct 22 2018
STATUS
approved