OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
Sam Miner, Enumeration of several two-by-four classes, arXiv:1610.01908 [math.CO], 2016.
FORMULA
G.f.: (2 - 13*x + 26*x^2 - 17*x^3 + 4*x^4 - x*(1 - 2*x - x^2)*sqrt(1 - 4*x))/(2*sqrt(1 - 4*x)*(1 - 3*x + x^2)^2). - G. C. Greubel, Oct 22 2018
a(n) ~ 2^(2*n + 4) / (25*sqrt(Pi*n)). - Vaclav Kotesovec, Jul 07 2024
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[(2 - 13*x + 26*x^2 - 17*x^3 + 4*x^4 - x*(1 - 2*x - x^2)*Sqrt[1 - 4*x])/(2*Sqrt[1 - 4*x]*(1 - 3*x + x^2)^2), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((2 - 13*x + 26*x^2 - 17*x^3 + 4*x^4 - x*(1 - 2*x - x^2)*sqrt(1 - 4*x))/(2*sqrt(1 - 4*x)*(1 - 3*x + x^2)^2)) \\ G. C. Greubel, Oct 22 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((2 - 13*x + 26*x^2 - 17*x^3 + 4*x^4 - x*(1 - 2*x - x^2)*Sqrt(1 - 4*x))/( 2*Sqrt(1 - 4*x)*(1 - 3*x + x^2)^2))); // G. C. Greubel, Oct 22 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 09 2015
a(13)-a(15) from Lars Blomberg, Apr 26 2018
Terms a(16) onward added by G. C. Greubel, Oct 22 2018
STATUS
approved