login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165532
Number of permutations of length n which avoid the patterns 4231 and 3214.
1
1, 1, 2, 6, 22, 87, 352, 1428, 5768, 23156, 92416, 367007, 1451780, 5725959, 22535868, 88566290, 347742688, 1364637732, 5353992916, 21005649217, 82425637860, 323523434437, 1270281675368, 4989615315114, 19607400037358, 77084254889327, 303184014866196, 1193001145648675
OFFSET
0,3
LINKS
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
Sam Miner, Enumeration of several two-by-four classes, arXiv:1610.01908 [math.CO], 2016.
FORMULA
G.f.: (2 - 13*x + 26*x^2 - 17*x^3 + 4*x^4 - x*(1 - 2*x - x^2)*sqrt(1 - 4*x))/(2*sqrt(1 - 4*x)*(1 - 3*x + x^2)^2). - G. C. Greubel, Oct 22 2018
a(n) ~ 2^(2*n + 4) / (25*sqrt(Pi*n)). - Vaclav Kotesovec, Jul 07 2024
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[(2 - 13*x + 26*x^2 - 17*x^3 + 4*x^4 - x*(1 - 2*x - x^2)*Sqrt[1 - 4*x])/(2*Sqrt[1 - 4*x]*(1 - 3*x + x^2)^2), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((2 - 13*x + 26*x^2 - 17*x^3 + 4*x^4 - x*(1 - 2*x - x^2)*sqrt(1 - 4*x))/(2*sqrt(1 - 4*x)*(1 - 3*x + x^2)^2)) \\ G. C. Greubel, Oct 22 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((2 - 13*x + 26*x^2 - 17*x^3 + 4*x^4 - x*(1 - 2*x - x^2)*Sqrt(1 - 4*x))/( 2*Sqrt(1 - 4*x)*(1 - 3*x + x^2)^2))); // G. C. Greubel, Oct 22 2018
CROSSREFS
Sequence in context: A165531 A374542 A150260 * A165533 A164651 A279566
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 09 2015
a(13)-a(15) from Lars Blomberg, Apr 26 2018
Terms a(16) onward added by G. C. Greubel, Oct 22 2018
STATUS
approved