login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374542
Number of length n inversion sequences avoiding the patterns 102 and 210.
4
1, 1, 2, 6, 22, 87, 351, 1416, 5681, 22660, 89961, 355924, 1404839, 5536143, 21794634, 85749490, 337271186, 1326421512, 5216761708, 20520185594, 80733298320, 317713643536, 1250674963766, 4924782835110, 19398524629494, 76434881013402, 301270165265954
OFFSET
0,3
FORMULA
G.f: ((4*x - 1) * (4*x^4 - 22*x^3 + 25*x^2 - 9*x + 1) - (2*x - 1) * (x^2 - 5*x + 1) * (2*x^2 - 4*x + 1) * (1-4*x)^(1/2)) / (2*x^3 * (4*x - 1) * (x - 1)^2).
D-finite with recurrence -(n+3)*(1514*n-13441)*a(n) +(16281*n^2-104929*n-159699)*a(n-1) +(-54702*n^2+377288*n-136533)*a(n-2) +(60299*n^2-430394*n+520290)*a(n-3) -6*(2*n-7)*(1697*n-7015)*a(n-4) +30*(-702*n+3361)=0. - R. J. Mathar, Jul 12 2024
a(n) ~ 2^(2*n+1)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 21 2024
CROSSREFS
Cf. A279555.
Sequence in context: A153475 A150259 A165531 * A150260 A165532 A165533
KEYWORD
nonn
AUTHOR
Benjamin Testart, Jul 12 2024
STATUS
approved