OFFSET
0,3
LINKS
Benjamin Testart, Table of n, a(n) for n = 0..1600
Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024.
FORMULA
G.f: ((4*x - 1) * (4*x^4 - 22*x^3 + 25*x^2 - 9*x + 1) - (2*x - 1) * (x^2 - 5*x + 1) * (2*x^2 - 4*x + 1) * (1-4*x)^(1/2)) / (2*x^3 * (4*x - 1) * (x - 1)^2).
D-finite with recurrence -(n+3)*(1514*n-13441)*a(n) +(16281*n^2-104929*n-159699)*a(n-1) +(-54702*n^2+377288*n-136533)*a(n-2) +(60299*n^2-430394*n+520290)*a(n-3) -6*(2*n-7)*(1697*n-7015)*a(n-4) +30*(-702*n+3361)=0. - R. J. Mathar, Jul 12 2024
a(n) ~ 2^(2*n+1)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 21 2024
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Benjamin Testart, Jul 12 2024
STATUS
approved