login
A279566
Number of length n inversion sequences avoiding the patterns 102 and 201.
26
1, 1, 2, 6, 22, 87, 354, 1465, 6154, 26223, 113236, 494870, 2185700, 9743281, 43784838, 198156234, 902374498, 4131895035, 19012201080, 87864535600, 407664831856, 1898184887679, 8867042353912, 41543375724751, 195164372948152, 919138464708907, 4338701289961694, 20524046955770940
OFFSET
0,3
COMMENTS
A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i<j<k) such that e_i > e_j < e_k and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 102 and 201.
LINKS
Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016-2018.
Chunyan Yan, Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
FORMULA
G.f.: (-8*x^4 + 18*x^3 - 10*x^2 - 8*x + 4 + 2 * (2*x - 1) * (x^2 - 2*x + 2) * ((5*x - 1)*(x - 1))^(1/2)) / (4*x * (2*x - 1) * (x - 1) * (x - 2)^2). - Benjamin Testart, Jul 12 2024
a(n) ~ 41 * 5^(n + 3/2) / (648 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 21 2024
EXAMPLE
The length 4 inversion sequences avoiding (102, 201) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123
KEYWORD
nonn,changed
AUTHOR
Megan A. Martinez, Feb 09 2017
EXTENSIONS
a(10)-a(11) from Alois P. Heinz, Feb 24 2017
a(12)-a(17) from Bert Dobbelaere, Dec 30 2018
a(18) and beyond from Benjamin Testart, Jul 12 2024
STATUS
approved