OFFSET
0,3
LINKS
Jay Pantone, Table of n, a(n) for n = 0..500
M. H. Albert, M. D. Atkinson, Robert Brignall, The enumeration of three pattern classes using monotone grid classes, The Electronic Journal of Combinatorics, vol.19, no.3, (2012)
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1, 11th line, named 1243,3412.
Index entries for linear recurrences with constant coefficients, signature (17, -124, 507, -1275, 2040, -2083, 1331, -508, 105, -9).
FORMULA
G.f.: (1 - 2*x)*(1 - 14*x + 81*x^2 - 249*x^3 + 438*x^4 - 447*x^5 + 260*x^6 - 82*x^7 + 14*x^8)/((1 - x)^2*(1 - 3*x + x^2)^3*(1 - 3*x)^2). [corrects minor error in Albert et al., 2012] - Jay Pantone, Dec 05 2017
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[(1 - 2 x) (1 - 14 x + 81 x^2 - 249 x^3 + 438 x^4 - 447 x^5 + 260 x^6 - 82 x^7 + 14 x^8)/((1 - x)^2*(1 - 3 x + x^2)^3*(1 - 3 x)^2), {x, 0, 29}], x] (* Michael De Vlieger, Dec 12 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((1-2*x)*(1-14*x+81*x^2-249*x^3+438*x^4-447*x^5 + 260*x^6-82*x^7+14*x^8)/((1-x)^2*(1-3*x+x^2)^3*(1-3*x)^2)) \\ G. C. Greubel, Oct 22 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 - 2*x)*(1-14*x+81*x^2-249*x^3+438*x^4-447*x^5+260*x^6-82*x^7+14*x^8)/((1 - x)^2*(1-3*x+x^2)^3*(1-3*x)^2))); // G. C. Greubel, Oct 22 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
More terms from N. J. A. Sloane, Aug 22 2012
Corrected terms from Jay Pantone, Dec 05 2017
STATUS
approved