OFFSET
0,3
REFERENCES
Kremer, Darla; and Shiu, Wai Chee; Finite transition matrices for permutations avoiding pairs of length four patterns. Discrete Math. 268 (2003), no. 1-3, 171-183. MR1983276 (2004b:05006). See Table 1.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
M. H. Albert, M. D. Atkinson, Robert Brignall, The enumeration of three pattern classes using monotone grid classes, The Electronic Journal of Combinatorics, vol.19, no.3, (2012)
Index entries for linear recurrences with constant coefficients, signature (17,-128,561,-1581,2984,-3804, 3216,-1712,512,-64)
FORMULA
G.f.: (4*x^10 -127*x^9 +692*x^8 -1657*x^7 +2305*x^6 -2045*x^5 +1196*x^4 -461*x^3 +113*x^2 -16*x+1) / ((x-1)^2 *(2*x-1)^6 *(x^2-3*x+1)). - Colin Barker, Jul 05 2013
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4) = 22.
MATHEMATICA
CoefficientList[Series[(4*x^10 -127*x^9 +692*x^8 -1657*x^7 +2305*x^6 - 2045*x^5 +1196*x^4 -461*x^3 +113*x^2 -16*x +1)/((x-1)^2*(2*x-1)^6*(x^2 - 3*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((4*x^10 -127*x^9 +692*x^8 -1657*x^7 +2305*x^6 - 2045*x^5 +1196*x^4 -461*x^3 +113*x^2 -16*x +1)/((x-1)^2*(2*x-1)^6*(x^2 - 3*x +1))) \\ G. C. Greubel, Oct 22 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((4*x^10 -127*x^9 +692*x^8 -1657*x^7 +2305*x^6 - 2045*x^5 +1196*x^4 -461*x^3 +113*x^2 -16*x +1)/((x-1)^2*(2*x-1)^6*(x^2 - 3*x +1)))); // G. C. Greubel, Oct 22 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincent Vatter, Sep 21 2009
STATUS
approved