login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116706
Number of permutations of length n which avoid the patterns 2134, 3421.
1
1, 2, 6, 22, 86, 330, 1206, 4174, 13726, 43134, 130302, 380414, 1078270, 2978814, 8046590, 21311486, 55468030, 142147582, 359268350, 896794622, 2213543934, 5408292862, 13091995646, 31424774142, 74845257726, 176991240190, 415789744126, 970830381054
OFFSET
1,2
LINKS
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
FORMULA
G.f.: x*(1 - 9*x + 34*x^2 - 64*x^3 + 64*x^4 - 28*x^5 + 4*x^6) / ((1 - x)*(1 - 2*x)^5)
From Colin Barker, Oct 20 2017: (Start)
a(n) = (24*(-32+39*2^n) - 263*2^(1+n)*n + 165*2^n*n^2 - 13*2^(1+n)*n^3 + 3*2^n*n^4) / 384 for n>1.
a(n) = 11*a(n-1) - 50*a(n-2) + 120*a(n-3) - 160*a(n-4) + 112*a(n-5) - 32*a(n-6) for n>7.
(End)
PROG
(PARI) Vec(x*(1 - 9*x + 34*x^2 - 64*x^3 + 64*x^4 - 28*x^5 + 4*x^6) / ((1 - x)*(1 - 2*x)^5) + O(x^30)) \\ Colin Barker, Oct 20 2017
CROSSREFS
Sequence in context: A079104 A116705 A116708 * A165524 A165525 A165526
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Feb 26 2006
STATUS
approved