login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165524
Number of permutations of length n which avoid the patterns 4321 and 1324.
1
1, 2, 6, 22, 86, 332, 1217, 4140, 12934, 37088, 98115, 241269, 555881, 1208988, 2498732, 4936275, 9367783, 17151454, 30408684, 52373368, 87869112, 143950884, 230755459, 362614022, 559490596, 848821676, 1267845697, 1866525871, 2711186627, 3889002516, 5513499142
OFFSET
1,2
LINKS
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
V. Vatter, Finding regular insertion encodings for permutation classes, Journal of Symbolic Computation, Volume 47, Issue 3, March 2012, Pages 259-265.
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
G.f.: (1-11*x-413*x^7+217*x^8+554*x^6-2*x^11+357*x^4 -83*x^9-519*x^5 +20*x^10 +56*x^2-172*x^3) / (1-x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>12. - Colin Barker, Oct 31 2017
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[(1-11*x-413*x^7+217*x^8+554*x^6-2*x^11+357*x^4 -83*x^9-519*x^5 +20*x^10 +56*x^2-172*x^3)/(1-x)^12, {x, 0, 50}], x] (* G. C. Greubel, Oct 21 2018 *)
LinearRecurrence[{12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1}, {1, 2, 6, 22, 86, 332, 1217, 4140, 12934, 37088, 98115, 241269}, 40] (* Harvey P. Dale, Jan 03 2019 *)
PROG
(PARI) Vec(x*(1 - 10*x + 48*x^2 - 138*x^3 + 273*x^4 - 370*x^5 + 379*x^6 - 278*x^7 + 137*x^8 - 46*x^9 + 10*x^10 - x^11) / (1 - x)^12 + O(x^40)) \\ Colin Barker, Oct 31 2017
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-11*x-413*x^7+217*x^8+554*x^6-2*x^11+357*x^4 -83*x^9-519*x^5 +20*x^10 +56*x^2-172*x^3)/(1-x)^12)); // G. C. Greubel, Oct 21 2018
CROSSREFS
Sequence in context: A116705 A116708 A116706 * A165525 A165526 A165527
KEYWORD
nonn,easy
AUTHOR
Vincent Vatter, Sep 21 2009
STATUS
approved