login
A165528
Number of permutations of length n which avoid the patterns 1324 and 4231.
1
1, 1, 2, 6, 22, 86, 336, 1282, 4758, 17234, 61242, 214594, 744594, 2566594, 8809442, 30157826, 103082050, 352045314, 1201795970, 4101913602, 13999868162, 47782800386, 163095158274, 556717514754, 1900427035650, 6487635578882, 22148113283074, 75613356769282
OFFSET
0,3
LINKS
M. Albert, M. Atkinson, and V. Vatter, Counting 1324-, 4231-avoiding permutations, The Electronic Journal of Combinatorics, Volume 16, Issue 1 (2009).
Christian Bean, Finding structure in permutation sets, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018.
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
Index entries for linear recurrences with constant coefficients, signature (13,-70,202,-336,320,-160,32).
FORMULA
G.f.: (1-12*x+59*x^2-152*x^3+218*x^4-168*x^5+58*x^6-6*x^7) / ((1-x) *(1-2*x)^4 *(1-4*x+2*x^2)).
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[(1 -12*x +59*x^2 -152*x^3 +218*x^4 -168*x^5 + 58*x^6 -6*x^7)/((1-x)*(1-2*x)^4*(1-4*x+2*x^2)), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
PROG
(PARI)
gf=(1-12*x+59*x^2-152*x^3+218*x^4-168*x^5+58*x^6-6*x^7)/( (1-x)*(1-2*x)^4*(1-4*x+2*x^2) )
v165528=Vec(gf+O('x^66))
/* Joerg Arndt, Aug 16 2012 */
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 -12*x +59*x^2 -152*x^3 +218*x^4 -168*x^5 + 58*x^6 -6*x^7)/((1-x)*(1- 2*x)^4*(1-4*x+2*x^2)))); // G. C. Greubel, Oct 22 2018
CROSSREFS
Sequence in context: A165525 A165526 A165527 * A116709 A165529 A116710
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
Prepended a(0)=1 by Joerg Arndt, Aug 16 2012
STATUS
approved