login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165534
Number of permutations of length n that avoid the patterns 1243 and 2431.
5
1, 2, 6, 22, 88, 363, 1507, 6241, 25721, 105485, 430767, 1752945, 7113095, 28797292, 116368938, 469531170, 1892133076, 7617145998, 30638026074, 123145086046, 494663313342, 1985995240464, 7969941119476, 31971818819844, 128214549263032, 514024475597524, 2060262910065740, 8255954041620260
OFFSET
1,2
COMMENTS
These permutations have an enumeration scheme of depth 5.
LINKS
Kremer, Darla and Shiu, Wai Chee; Finite transition matrices for permutations avoiding pairs of length four patterns. Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
Jay Pantone, The Enumeration of Permutations Avoiding 3124 and 4312, arXiv:1309.0832 [math.CO], (2013)
V. Vatter, Enumeration schemes for restricted permutations, Combin., Prob. and Comput. 17 (2008), 137-159.
FORMULA
G.f.: -(8*x^4 - 7*x^3 + x^2 + sqrt(-4*x + 1)*(4*x^4 - 9*x^3 + 9*x^2 - 2*x))/(12*x^4 - 31*x^3 + 27*x^2 + sqrt(-4*x + 1)*(4*x^4 - 13*x^3 + 15*x^2 - 7*x + 1) - 9*x + 1). - Jay Pantone, Sep 08 2013
Recurrence (for n>5): (n-5)*(n+2)*(n^3 - 69*n^2 + 434*n - 756)*a(n) = 2*(5*n^5 - 363*n^4 + 3509*n^3 - 11217*n^2 + 8006*n + 11760)*a(n-1) - 3*(11*n^5 - 804*n^4 + 8357*n^3 - 32556*n^2 + 50672*n - 21000)*a(n-2) + 2*(20*n^5 - 1467*n^4 + 15806*n^3 - 66753*n^2 + 123854*n - 83160)*a(n-3) - 8*(n-4)*(2*n-7)*(n^3 - 66*n^2 + 299*n - 390)*a(n-4). - Vaclav Kotesovec, Sep 09 2013
a(n) ~ 4^n/9 * (1+1/sqrt(Pi*n)). - Vaclav Kotesovec, Sep 09 2013
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[-(1 / x) (8 x^4 - 7 x^3 + x^2 + Sqrt[-4 x + 1] (4 x^4 - 9 x^3 + 9 x^2 - 2 x)) / (12 x^4 - 31 x^3 + 27 x^2 + Sqrt[-4 x + 1] (4 x^4 - 13 x^3 + 15 x^2 - 7 x + 1) - 9 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 10 2013 *)
PROG
(PARI) x='x+O('x^30); Vec(-(8*x^4-7*x^3+x^2 +sqrt(-4*x+1)*(4*x^4 -9*x^3 +9*x^2-2*x))/(12*x^4-31*x^3+27*x^2 +sqrt(-4*x+1)*(4*x^4-13*x^3 +15*x^2 -7*x +1) -9*x +1)) \\ G. C. Greubel, Oct 22 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(-(8*x^4 -7*x^3 +x^2 +Sqrt(-4*x+1)*(4*x^4 -9*x^3 +9*x^2 -2*x))/(12*x^4 - 31*x^3+27*x^2 +Sqrt(-4*x+1)*(4*x^4-13*x^3+15*x^2-7*x+1) -9*x +1))); // G. C. Greubel, Oct 22 2018
CROSSREFS
The simple permutations in this class are given by A226430.
Sequence in context: A101046 A363811 A150263 * A165535 A319028 A165536
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
More terms from Jay Pantone, Sep 08 2013
STATUS
approved