login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049135
Revert transform of (-1 + 3x - 2x^2 + x^3)/(2x - 1).
0
1, 1, 2, 6, 22, 88, 368, 1585, 6984, 31348, 142868, 659434, 3076432, 14483556, 68723800, 328322903, 1577959294, 7624155960, 37011662868, 180436535308, 883016392536, 4336268255420, 21361517691248, 105535705919116
OFFSET
1,3
FORMULA
Recurrence: 23*(n-2)*(n-1)*n*(72*n^2 - 384*n + 485)*a(n) = 72*(n-2)*(n-1)*(216*n^3 - 1476*n^2 + 3183*n - 2171)*a(n-1) - 24*(n-2)*(1944*n^4 - 18144*n^3 + 61731*n^2 - 90333*n + 47597)*a(n-2) + 24*(2592*n^5 - 33264*n^4 + 166788*n^3 - 406284*n^2 + 477074*n - 213371)*a(n-3) - 48*(n-3)*(3*n - 13)*(3*n - 11)*(72*n^2 - 240*n + 173)*a(n-4). - Vaclav Kotesovec, Jan 02 2021
a(n) ~ (2*sqrt(3) - 3)^(1/4) * 2^(n - 3/2) * 3^(n-1) / (sqrt(Pi) * n^(3/2) * (3 - sqrt(2)*3^(1/4))^(n - 1/2)). - Vaclav Kotesovec, Jan 02 2021
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x*(-1 + 3x - 2x^2 + x^3)/(2x - 1), {x, 0, 40}], x], x]] (* Vaclav Kotesovec, Jan 02 2021 *)
CROSSREFS
Sequence in context: A165538 A165539 A109033 * A049127 A199481 A049137
KEYWORD
nonn
STATUS
approved