OFFSET
1,3
FORMULA
Recurrence: 2*n*(2*n - 1)*(26*n^2 - 125*n + 156)*a(n) = 3*(182*n^4 - 1291*n^3 + 3244*n^2 - 3388*n + 1158)*a(n-1) - 3*(78*n^4 - 973*n^3 + 3964*n^2 - 6793*n + 4431)*a(n-2) - (n-3)*(1690*n^3 - 10179*n^2 + 19241*n - 12657)*a(n-3) - 31*(n-4)*(n-3)*(26*n^2 - 73*n + 57)*a(n-4). - Vaclav Kotesovec, Jan 02 2021
a(n+1) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n+1,k) * binomial(2*n-2*k,n-3*k). - Seiichi Manyama, Sep 27 2023
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x*(x - 1)^2/(1 - x - x^3), {x, 0, 40}], x], x]] (* Vaclav Kotesovec, Jan 02 2021 *)
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved