login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199481
G.f. A(x) satisfies: 1-x = Sum_{n>=0} (-x)^n * A(x)^[n*phi], where phi = (sqrt(5)+1)/2.
0
1, 1, 2, 6, 22, 88, 369, 1600, 7122, 32370, 149612, 701046, 3322671, 15901030, 76729203, 372918345, 1823872039, 8969769017, 44330916829, 220062127756, 1096744496191, 5485585559684, 27526824797373, 138542038343946, 699184051431377, 3537456038149028, 17938918589386868
OFFSET
0,3
COMMENTS
Compare to g.f. C(x) of the Catalan numbers: 1-x = 1 + Sum_{n>=1} (-x)^n*C(x)^(2*n-1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 88*x^5 + 369*x^6 + 1600*x^7 +...
where
1-x = 1 - x*A(x) + x^2*A(x)^3 - x^3*A(x)^4 + x^4*A(x)^6 - x^5*A(x)^8 + x^6*A(x)^9 - x^7*A(x)^11 + x^8*A(x)^12 +...+ (-x)^n*A(x)^A000201(n) +...
Exponents form the lower Wythoff sequence, A000201(n) = [n*phi], which begins:
[0,1,3,4,6,8,9,11,12,14,16,17,19,21,22,24,25,27,29,30,32,33,35,...].
Related expansions:
A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 120*x^4 + 498*x^5 + 2153*x^6 +...;
A(x)^4 = 1 + 4*x + 14*x^2 + 52*x^3 + 209*x^4 + 888*x^5 + 3908*x^6 +...;
A(x)^6 = 1 + 6*x + 27*x^2 + 116*x^3 + 507*x^4 + 2274*x^5 + 10415*x^6 +...;
A(x)^8 = 1 + 8*x + 44*x^2 + 216*x^3 + 1030*x^4 + 4904*x^5 + 23476*x^6 +...; ...
where A(x) = 1 + x*A(x)^3 - x^2*A(x)^4 + x^3*A(x)^6 - x^4*A(x)^8 +-...
PROG
(PARI) {a(n)=local(A=[1], phi=(sqrt(5)+1)/2); for(i=1, n, A=concat(A, 0); A[#A]=Vec(sum(m=1, #A, (-x)^m*Ser(A)^floor(m*phi)))[#A]); A[n+1]}
(PARI) {a(n)=local(A=1+x, phi=(sqrt(5)+1)/2); for(i=1, n, A=1+sum(m=1, n, -(-x)^m*A^floor((m+1)*phi))+x*O(x^n)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A109033 A049135 A049127 * A049137 A287223 A365246
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 06 2011
STATUS
approved