login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365246
G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^2*A(x)^4).
2
1, 1, 2, 6, 22, 88, 370, 1613, 7230, 33117, 154330, 729369, 3487470, 16840346, 82007012, 402269702, 1985867630, 9858739759, 49187798158, 246506563980, 1240337033398, 6263601365616, 31734939452116, 161270637750264, 821802841072422, 4198348868249768
OFFSET
0,3
FORMULA
a(n) = (1/(2*n+1)) * Sum_{k=0..floor(n/2)} binomial(n-k-1,k) * binomial(2*n+1,n-2*k).
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(n-k-1, k)*binomial(2*n+1, n-2*k))/(2*n+1);
CROSSREFS
Sequence in context: A199481 A049137 A287223 * A333080 A096267 A150264
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 28 2023
STATUS
approved