login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365244
G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^2*A(x)^3).
4
1, 1, 1, 2, 6, 17, 48, 144, 449, 1422, 4568, 14893, 49139, 163665, 549570, 1858754, 6326343, 21651064, 74462327, 257219221, 892047965, 3104749126, 10841192392, 37967942203, 133333407639, 469405472729, 1656383420850, 5857371543403, 20754268304707
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,k) * binomial(n+k+1,n-2*k)/(n+k+1).
D-finite with recurrence -9*n*(3*n-5) *(3*n+2) *(15657757169*n -38967750523)*a(n) +3*(1246945698477*n^4 -4744568003544*n^3 +3294337649527*n^2 +2214578323972*n -1078893934272) *a(n-1) +6*(98125454565*n^4 -4049050969593*n^3 +21710764341344*n^2 -39026642938410*n +22772957131188) *a(n-2) +6*(1426531749264*n^4 -6603349282173*n^3 -4098111856085*n^2 +51689999346882*n -56245738276010) *a(n-3) +6*(2322713957130*n^4 -32736762801117*n^3 +166244031312630*n^2 -356896536324983*n +268070043432100) *a(n-4) -6*(n-5) *(2*n-9) *(613164767527*n^2 -4657829502565*n +8148618486058) *a(n-5) +2*(n-6) *(2*n-11) *(271184324539*n^2 -2272760427224*n +4256723647917) *a(n-6) -4*(6162243349*n -17166617798) *(2*n-13)*(n-6) *(n-7)*a(n-7)=0. - R. J. Mathar, Aug 29 2023
MAPLE
A365244 := proc(n)
add( binomial(n-k-1, k)*binomial(n+k+1, n-2*k)/(n+k+1), k=0..floor(n/2)) ;
end proc:
seq(A365244(n), n=0..80); # R. J. Mathar, Aug 29 2023
MATHEMATICA
nmax = 28; A[_] = 1;
Do[A[x_] = 1 + x*A[x]/(1 - x^2*A[x]^3) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 25 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(n-k-1, k)*binomial(n+k+1, n-2*k)/(n+k+1));
CROSSREFS
Sequence in context: A019487 A077936 A077983 * A036365 A299162 A244400
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 28 2023
STATUS
approved