login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364739
G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x)^4).
5
1, 1, 3, 14, 78, 477, 3094, 20905, 145547, 1036891, 7522335, 55382045, 412740298, 3107671807, 23604165913, 180641336755, 1391555475647, 10781886600707, 83968131035849, 656931982467460, 5160714860765430, 40692065290732340, 321937030883130021
OFFSET
0,3
FORMULA
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(2*n+2*k,n-1-k) for n > 0.
From Paul D. Hanna, Aug 19 2023: (Start)
A(x)^m = Sum_{n>=0} a(n,m) * x^n, where a(n,m) = (m/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(2*n+2*k+m-1,n-1-k) for n > 0.
A(x) = exp( Sum_{n>=1} L(n) * x^n/n ), where L(n) = Sum_{k=0..n-1} binomial(n,k) * binomial(2*n+2*k-1,n-1-k) for n >= 1.
G.f. A(x) satisfies the following formulas.
(1) A(x) = 1 + x*(A(x)^2 - A(x)^4 + A(x)^5).
(2) A(x)^2 = 1 + x*(A(x)^2 + A(x)^3 - A(x)^4 + A(x)^6).
(3) A(x)^3 = 1 + x*(A(x)^2 + A(x)^3 + A(x)^7).
(4) A(x)^4 = 1 + x*(A(x)^2 + A(x)^3 + A(x)^5 + A(x)^8).
(5) A(x)^5 = 1 + x*(A(x)^2 + A(x)^3 + A(x)^5 + A(x)^6 + A(x)^9).
(6) A(x)^6 = 1 + x*(A(x)^2 + A(x)^3 + A(x)^5 + A(x)^6 + A(x)^7 + A(x)^10).
(End)
MATHEMATICA
nmax = 22; A[_] = 1;
Do[A[x_] = 1 + x*A[x]^2/(1-x*A[x]^4) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
PROG
(PARI) a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(2*n+2*k, n-1-k))/n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 05 2023
STATUS
approved