login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174072
Number of permutations of length n with no consecutive triples i,i+2,i+4.
9
1, 1, 2, 6, 24, 114, 674, 4714, 37754, 340404, 3412176, 37631268, 452745470, 5900431012, 82802497682, 1244815252434, 19958707407096, 339960096280062, 6130407887839754, 116675071758609742, 2337186717333367706, 49153251967227002616, 1082860432463176004544
OFFSET
0,3
COMMENTS
Note for n<5 there are no such subsequences, so those values are trivially n!.
LINKS
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, 2012. [broken link]
EXAMPLE
For n=5 (0,2,4,1,3) is an example of a permutation with an i,i+2,i+4 triple. If we look at 0,2,4 as a block, then we have 3! ways to permute the triple with the remaining 1 & 3. Hence a(5) = 5! - 3! = 114.
MAPLE
b:= proc(s, x, y) option remember; `if`(s={}, 1, add(
`if`(x=0 or x-y<>2 or y-j<>2, b(s minus {j}, y, j), 0), j=s))
end:
a:= n-> b({$1..n}, 0$2):
seq(a(n), n=0..14); # Alois P. Heinz, Apr 13 2021
MATHEMATICA
b[s_, x_, y_] := b[s, x, y] = If[s == {}, 1, Sum[
If[x == 0 || x - y != 2 || y - j != 2,
b[s ~Complement~ {j}, y, j], 0], {j, s}]];
a[n_] := b[Range[n], 0, 0];
Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
CROSSREFS
First column of A216716.
Sequence in context: A189283 A177522 A216717 * A224255 A326348 A128088
KEYWORD
nonn
AUTHOR
Isaac Lambert, Mar 06 2010
EXTENSIONS
a(0)-a(4) and a(10)-a(11) moved from a duplicate entry based on the Dymacek et al. paper on Apr 13 2021
a(12)-a(22) from Alois P. Heinz, Apr 13 2021
STATUS
approved