|
|
A174075
|
|
Number of circular permutations of length n without modular consecutive triples i,i+2,i+4.
|
|
6
|
|
|
1, 6, 18, 93, 600, 4320, 35168, 321630, 3257109, 36199458, 438126986, 5736774869, 80808984725, 1218563192160, 19587031966352, 334329804180135, 6039535339644630, 115118210695441900, 2308967760171049528, 48613722701440862328, 1072008447320752890459
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,2
|
|
COMMENTS
|
Circular permutations are permutations whose indices are from the ring of integers modulo n.
|
|
REFERENCES
|
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
Since a(5)=18, there are (5-1)!-18=4 circular permutations with modular consecutive triples i,i+2,i+4 in all circular permutations of length 5. These are exactly (0,2,4,1,3), (0,2,4,3,1), (0,4,2,1,3), and (0,3,2,4,1). Note some have more than one modular progression.
|
|
MATHEMATICA
|
f[i_, n_, k_]:=If[i==0 && k==0, 1, If[i==n && n==k, 1, Binomial[k-1, k-i]*Binomial[n-k-1, k-i-1] + 2*Binomial[k-1, k-i-1]*Binomial[n-k-1, k-i-1]+Binomial[k-1, k-i-1]*Binomial[n-k-1, k-i]]];
w1[i_, n_, k_]:=If[n-2k+i<0, 0, If[n-2k+i==0, 1, (n-2k+i-1)!]];
a[n_, k_]:=Sum[f[i, n, k]*w1[i, n, k], {i, 0, k}];
A165962[n_]:=(n-1)!+Sum[(-1)^k*a[n, k], {k, 1, n}];
b[n_, k_]:=Sum[Sum[Sum[f[j, n/2, p]*f[i-j, n/2, k-p]*w2[i, j, n, k, p], {p, 0, k}], {j, 0, i}], {i, 0, k-1}];
w2[i_, j_, n_, k_, p_]:=If[n/2-2p+j<=0 || n/2-2(k-p)+(i-j)<=0, 0, (n-2k+i-1)!];
A216727[n_?EvenQ]:=(n-1)!+Sum[(-1)^k*b[n, k], {k, 1, n}];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|