login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174070
Numbers that can be written as a sum of at least 3 consecutive squares.
5
14, 29, 30, 50, 54, 55, 77, 86, 90, 91, 110, 126, 135, 139, 140, 149, 174, 190, 194, 199, 203, 204, 230, 245, 255, 271, 280, 284, 285, 294, 302, 330, 355, 365, 366, 371, 380, 384, 385, 415, 434, 446, 451, 476, 492, 501, 505, 506, 509, 510, 534, 559, 590, 595
OFFSET
1,1
COMMENTS
Numbers of the form (a(a+1)(2a+1)-b(b+1)(2b+1))/6 where a >= b+3 and b >= 0. - Robert Israel, Jul 18 2017
LINKS
EXAMPLE
14 = 1^2 + 2^2 + 3^2, 29 = 2^2 + 3^2 + 4^2.
30 = 1^2 + 2^2 + 3^2 + 4^2, 50 = 3^2 + 4^2 + 5^2.
MAPLE
N:= 1000: # to get all terms <= N
R:= [seq(b*(b+1)*(2*b+1)/6, b=0..ceil(sqrt(N/3)))]:
sort(convert(select(`<=`, {seq(seq(R[i]-R[j], j=1..i-3), i=1..nops(R))}, N), list)); # Robert Israel, Jul 18 2017
MATHEMATICA
max=50^2; lst={}; Do[z=n^2+(n+1)^2; Do[z+=(n+x)^2; If[z>max, Break[]]; AppendTo[lst, z], {x, 2, max/2}], {n, max/2}]; Union[lst]
(* Second program: *)
Function[s, Function[t, Union@ Flatten@ Map[TakeWhile[#, # < t[[1, -1]] &] &, t]]@ Map[Total /@ Partition[s, #, 1] &, Range[3, Length@ s]]][Range[16]^2] (* Michael De Vlieger, Jul 18 2017 *)
Module[{nn=30, sq}, sq=Range[nn]^2; Take[Union[Flatten[Table[Total/@ Partition[ sq, n, 1], {n, 3, nn-2}]]], 2nn]] (* Harvey P. Dale, Nov 16 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved