login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353197
Numbers k such that k + s + k*s is prime, where s is the sum of digits of k.
1
1, 14, 29, 32, 38, 41, 56, 71, 89, 95, 107, 113, 119, 155, 164, 173, 185, 203, 212, 236, 251, 263, 275, 278, 290, 293, 299, 305, 311, 326, 344, 371, 377, 395, 401, 416, 419, 437, 467, 470, 473, 479, 485, 497, 509, 524, 527, 539, 569, 584, 587, 593, 611, 623, 635, 641, 659, 665, 671, 674, 692, 701
OFFSET
1,2
COMMENTS
Except for 1, all terms == 2 (mod 3).
LINKS
EXAMPLE
a(3) = 29 is a term because its sum of digits is 2+9 = 11 and 29 + 11 + 29*11 = 359 is prime.
MAPLE
f:= proc(n) local s, t;
s:= convert(convert(n, base, 10), `+`);
n+s+s*n;
end proc:
select(t -> isprime(f(t)), [1, seq(i, i=2..10000, 3)]);
PROG
(Python)
from sympy import isprime
def ok(n): s = sum(map(int, str(n))); return isprime(n + s + n*s)
print([k for k in range(702) if ok(k)]) # Michael S. Branicky, Apr 29 2022
CROSSREFS
Cf. A007953.
Sequence in context: A305662 A174070 A045527 * A306212 A041384 A041382
KEYWORD
nonn,base
AUTHOR
Robert Israel, Apr 29 2022
STATUS
approved