login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192877
Coefficient of x in the reduction by (x^2->x+1) of the polynomial p(n,x) given in Comments.
3
0, 1, 4, 14, 47, 152, 496, 1601, 5192, 16786, 54351, 175836, 569100, 1841513, 5959484, 19284934, 62407951, 201955408, 653543000, 2114907025, 6843987040, 22147600586, 71671151919, 231932702004, 750550018452, 2428830833977
OFFSET
0,3
COMMENTS
The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x + 1, and p(n,x) = x*p(n-1,x) + 2*(x^2)*p(n-1,x) + 1. See A192872.
FORMULA
a(n) = 2*a(n-1) + 6*a(n-2) - 5*a(n-3) - 6*a(n-4) + 4*a(n-5).
G.f.: x*(1+2*x) / ( (1-x)*(1+x-x^2)*(1-2*x-4*x^2) ). - R. J. Mathar, May 06 2014
MATHEMATICA
(See A192876.)
LinearRecurrence[{2, 6, -5, -6, 4}, {0, 1, 4, 14, 47}, 30] (* G. C. Greubel, Jan 08 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)))) \\ G. C. Greubel, Jan 08 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)) )); // G. C. Greubel, Jan 08 2019
(Sage) (x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
(GAP) a:=[0, 1, 4, 14, 47];; for n in [6..30] do a[n]:=2*a[n-1]+6*a[n-2] -5*a[n-3]-6*a[n-4]+4*a[n-5]; od; a; # G. C. Greubel, Jan 08 2019
CROSSREFS
Sequence in context: A326346 A046718 A291385 * A263622 A104487 A247210
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 11 2011
STATUS
approved