OFFSET
0,3
COMMENTS
The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x + 1, and p(n,x) = x*p(n-1,x) + 2*(x^2)*p(n-1,x) + 1. See A192872.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,6,-5,-6,4).
FORMULA
a(n) = 2*a(n-1) + 6*a(n-2) - 5*a(n-3) - 6*a(n-4) + 4*a(n-5).
G.f.: x*(1+2*x) / ( (1-x)*(1+x-x^2)*(1-2*x-4*x^2) ). - R. J. Mathar, May 06 2014
MATHEMATICA
(See A192876.)
LinearRecurrence[{2, 6, -5, -6, 4}, {0, 1, 4, 14, 47}, 30] (* G. C. Greubel, Jan 08 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)))) \\ G. C. Greubel, Jan 08 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)) )); // G. C. Greubel, Jan 08 2019
(Sage) (x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
(GAP) a:=[0, 1, 4, 14, 47];; for n in [6..30] do a[n]:=2*a[n-1]+6*a[n-2] -5*a[n-3]-6*a[n-4]+4*a[n-5]; od; a; # G. C. Greubel, Jan 08 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 11 2011
STATUS
approved