login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192875
Coefficient of x in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.
3
0, 1, 3, 11, 37, 119, 391, 1257, 4087, 13195, 42757, 138271, 447615, 1448249, 4687071, 15166963, 49082501, 158832391, 513995543, 1663319433, 5382623015, 17418520571, 56367538373, 182409150671, 590288468367, 1910213517529
OFFSET
0,3
COMMENTS
The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x, and p(n,x) = x*p(n-1,x) + 2*(x^2)*p(n-1,x) + 1. See A192872.
FORMULA
a(n) = 2*a(n-1) + 6*a(n-2) - 5*a(n-3) - 6*a(n-4) + 4*a(n-5).
G.f.: x*(1+2*x)*(1-x+x^2) / ( (1-x)*(1+x-x^2)*(1-2*x-4*x^2)). - R. J. Mathar, May 06 2014
MAPLE
seq(coeff(series(x*(1+2*x)*(1-x+x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Jan 08 2019
MATHEMATICA
(See A192874.)
LinearRecurrence[{2, 6, -5, -6, 4}, {0, 1, 3, 11, 37}, 30] (* G. C. Greubel, Jan 08 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1+2*x)*(1-x+x^2)/((1-x)*(1+ x-x^2)*(1-2*x-4*x^2)))) \\ G. C. Greubel, Jan 08 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1+2*x)*(1-x+x^2)/((1-x)*(1+ x-x^2)*(1-2*x-4*x^2)) )); // G. C. Greubel, Jan 08 2019
(Sage) (x*(1+2*x)*(1-x+x^2)/((1-x)*(1+ x-x^2)*(1-2*x-4*x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
(GAP) a:=[0, 1, 3, 11, 37];; for n in [6..30] do a[n]:=2*a[n-1]+6*a[n-2] - 5*a[n-3]-6*a[n-4]+4*a[n-5]; od; a; # G. C. Greubel, Jan 08 2019
CROSSREFS
Sequence in context: A007615 A065540 A084171 * A118044 A027062 A134757
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 11 2011
STATUS
approved