login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192874
Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.
3
1, 0, 4, 6, 26, 72, 246, 774, 2532, 8150, 26434, 85448, 276654, 895054, 2896788, 9373678, 30334682, 98163784, 317666758, 1027987894, 3326644036, 10765237670, 34837054674, 112735054856, 364818336766, 1180576879422
OFFSET
0,3
COMMENTS
The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x, and p(n,x) = x*p(n-1,x) + 2*(x^2)*p(n-1,x) + 1. See A192872.
FORMULA
a(n) = 2*a(n-1) + 6*a(n-2) - 5*a(n-3) - 6*a(n-4) + 4*a(n-5).
G.f.: (x^2-x+1)*(4*x^2+x-1) / ( (x-1)*(x^2-x-1)*(4*x^2+2*x-1) ). - R. J. Mathar, May 06 2014
MATHEMATICA
q = x^2; s = x + 1; z = 26;
p[0, x_] := 1; p[1, x_] := x;
p[n_, x_] := p[n - 1, x]*x + 2*p[n - 2, x]*x^2 + 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192874 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192875 *)
LinearRecurrence[{2, 6, -5, -6, 4}, {1, 0, 4, 6, 26}, 30] (* G. C. Greubel, Jan 08 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((x^2-x+1)*(4*x^2+x-1)/((x-1)*(x^2-x-1)*( 4*x^2+2*x-1))) \\ G. C. Greubel, Jan 08 2019
(Magma) I:=[1, 0, 4, 6, 26]; [n le 5 select I[n] else 2*Self(n-1)+6*Self(n-2) -5*Self(n-3)-6*Self(n-4)+4*Self(n-5): n in [1..30]]; // G. C. Greubel, Jan 08 2019
(Sage) ((x^2-x+1)*(4*x^2+x-1)/((x-1)*(x^2-x-1)*( 4*x^2+2*x-1))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
(GAP) a:=[1, 0, 4, 6, 26];; for n in [6..30] do a[n]:=2*a[n-1]+6*a[n-2] - 5*a[n-3]-6*a[n-4]+4*a[n-5]; od; a; # G. C. Greubel, Jan 08 2019
CROSSREFS
Sequence in context: A075277 A378795 A370061 * A371869 A159557 A176756
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 11 2011
STATUS
approved