login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060642 Triangle read by rows: row n lists number of ordered partitions into k parts of partitions of n. 21
1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 7, 22, 21, 8, 1, 11, 43, 59, 36, 10, 1, 15, 80, 144, 124, 55, 12, 1, 22, 141, 321, 362, 225, 78, 14, 1, 30, 240, 669, 944, 765, 370, 105, 16, 1, 42, 397, 1323, 2266, 2287, 1437, 567, 136, 18, 1, 56, 640, 2511, 5100, 6215, 4848, 2478, 824, 171, 20, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

FORMULA

G.f. A(n;x) for n-th row satisfies A(n;x) = Sum_{k=0..n-1} A000041(n-k)*A(k;x)*x, A(0;x) = 1. - Vladeta Jovovic, Jan 02 2004

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A144064(n,k-i). - Alois P. Heinz, Mar 12 2015

Sum_{k=1..n} k * T(n,k) = A326346(n). - Alois P. Heinz, Sep 11 2019

Sum_{k=0..n} (-1)^k * T(n,k) = A010815(n). - Alois P. Heinz, Feb 07 2021

G.f. of column k: (-1 + Product_{j>=1} 1 / (1 - x^j))^k. - Ilya Gutkovskiy, Feb 13 2021

EXAMPLE

Table begins:

   1;

   2,   1;

   3,   4,    1;

   5,  10,    6,    1;

   7,  22,   21,    8,    1;

  11,  43,   59,   36,   10,    1;

  15,  80,  144,  124,   55,   12,   1;

  22, 141,  321,  362,  225,   78,  14,   1;

  30, 240,  669,  944,  765,  370, 105,  16,  1;

  42, 397, 1323, 2266, 2287, 1437, 567, 136, 18, 1;

  ...

For n=4 there are 5 partitions of 4, namely 4, 31, 22, 211, 11111. There are 5 ways to pick 1 of them; 10 ways to partition one of them into 2 ordered parts: 3,1; 1,3; 2,2; 21,1; 1,21; 2,11; 11,2; 111,1; 1,111; 11,11; 6 ways to partition one of them into 3 ordered parts: 2,1,1; 1,2,1; 1,1,2; 11,1,1; 1,11,1; 1,1,11; and one way to partition one of them into 4 ordered parts: 1,1,1,1. So row 4 is 5,10,6,1.

MAPLE

A:= proc(n, k) option remember; `if`(n=0, 1, k*add(

      A(n-j, k)*numtheory[sigma](j), j=1..n)/n)

    end:

T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):

seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Mar 12 2015

MATHEMATICA

A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[1, j], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[ Table[ T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-Fran├žois Alcover, Jul 15 2015, after Alois P. Heinz *)

CROSSREFS

Columns k=1-10 give: A000041, A048574, A341221, A341222, A341223, A341225, A341226, A341227, A341228, A341236.

Row sums give A055887.

Cf. A010815, A055888, A144064, A261719, A326346.

T(2n,n) gives A340987.

Sequence in context: A126198 A055888 A094442 * A306186 A154929 A249042

Adjacent sequences:  A060639 A060640 A060641 * A060643 A060644 A060645

KEYWORD

easy,nonn,tabl

AUTHOR

Alford Arnold, Apr 16 2001

EXTENSIONS

More terms from Vladeta Jovovic, Jan 02 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 19:16 EDT 2021. Contains 348155 sequences. (Running on oeis4.)