login
A060643
Number of conjugacy classes in the symmetric group S_n that have even number of elements.
0
0, 0, 1, 3, 5, 7, 11, 20, 28, 38, 52, 73, 97, 127, 168, 229, 295, 381, 486, 623, 788, 994, 1247, 1571, 1954, 2428, 3002, 3710, 4557, 5588, 6826, 8347, 10141, 12306, 14879, 17973, 21633, 26007, 31177, 37334, 44579, 53166, 63253, 75167, 89126, 105542, 124738
OFFSET
1,4
COMMENTS
The total number of conjugacy classes of S_n is the partition function p(n) (sequence A000041) and the number of conjugacy classes that have odd number of elements is given in A060632 so a(n) = A000041(n) - A060632(n) for n >= 1.
FORMULA
a(n) = A000041(n) - A060632(n).
CROSSREFS
Sequence in context: A323065 A225421 A175235 * A025077 A186773 A130759
KEYWORD
nonn
AUTHOR
Avi Peretz (njk(AT)netvision.net.il), Apr 17 2001
EXTENSIONS
More terms from Sean A. Irvine, Dec 05 2022
STATUS
approved