login
A225421
Prime numbers consisting of only odd digits such that there is only one permutation of its digits that produces a prime number.
1
3, 5, 7, 11, 19, 53, 59, 151, 353, 557, 599, 773, 997, 5557, 7559, 11119, 15559, 59999, 71777, 75553, 79999, 99991, 191999, 511111, 555557, 575557, 775777, 777977, 799979, 1111151, 3353333, 5595559, 5755559, 7577777, 9999991, 33335333, 55555553, 55555559
OFFSET
1,1
MATHEMATICA
t2 = Select[Prime[Range[100000]], Intersection[{0, 2, 4, 6, 8}, Union[IntegerDigits[#]]] == {} &]; t = {}; Do[If[Length[Select[Table[FromDigits[k], {k, Permutations[IntegerDigits[p]]}], PrimeQ]] == 1, AppendTo[t, p]], {p, t2}]; t
edpQ[n_]:=Module[{idn=IntegerDigits[n]}, AllTrue[idn, OddQ]&&Count[ FromDigits/@ Permutations[idn], _?PrimeQ]==1]; Select[Prime[ Range[ 332*10^4]], edpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 25 2018 *)
CROSSREFS
Cf. A039986 (similar, but allowing even digits also).
Sequence in context: A133846 A056208 A323065 * A175235 A060643 A025077
KEYWORD
nonn,base
AUTHOR
T. D. Noe, May 07 2013
STATUS
approved