login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225418
Composite numbers which contain their sum of the distinct prime factors (sopf function) as a substring.
1
25, 32, 54, 98, 125, 126, 128, 140, 196, 230, 243, 246, 255, 256, 315, 322, 348, 366, 392, 512, 520, 576, 625, 810, 828, 896, 1024, 1029, 1060, 1080, 1152, 1166, 1216, 1224, 1225, 1243, 1330, 1395, 1400, 1458, 1462, 1512, 1536, 1548, 1575, 1647, 1708, 1792, 1824, 1872, 1875
OFFSET
1,1
LINKS
EXAMPLE
17061 is in the sequence because 17061=3*11*11*47, sopf(17061)=3+11+47=61, substring of 17061.
MATHEMATICA
Select[Range[2000], CompositeQ[#]&&SequenceCount[IntegerDigits[#], IntegerDigits[ Total[ FactorInteger[#][[All, 1]]]]]>0&] (* Harvey P. Dale, Apr 29 2018 *)
PROG
(PARI) sopf(n)= {s=0; f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
Indigit(a, b)={ u=Vec(Str(a)); v=Vec(Str(b)); indi=0; la=#u; lb=#v; i=1; while(i<=la-lb+1&&indi==0, d=0; for(x=1, lb, if(v[x]==u[i+x-1], d+=1)); indi=(d==lb) ; i+=1); return(indi)}
{ for(i=1, 10^4, if(Indigit(i, sopf(i))&&isprime(i)==0, print(i)))}
CROSSREFS
Sequence in context: A107258 A258876 A263029 * A035140 A050694 A107608
KEYWORD
nonn,base
AUTHOR
Antonio Roldán, May 07 2013
STATUS
approved