login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050694
Composite numbers k such that all prime factors of k are a substring of k.
6
25, 32, 125, 128, 135, 175, 243, 250, 256, 324, 375, 432, 512, 625, 735, 875, 1024, 1250, 1352, 1372, 1593, 1675, 1715, 1792, 2048, 2176, 2304, 2500, 2510, 2560, 2570, 2744, 3072, 3087, 3125, 3375, 3645, 3675, 3792, 4232, 4375, 5120, 5210, 5230, 5832
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 150 terms from Lava)
FORMULA
a(n) << n log n. - Charles R Greathouse IV, Jul 09 2015
EXAMPLE
1675 = 5*5*67 -> 167{5} and 1{67}5.
MATHEMATICA
d[n_]:=IntegerDigits[n]; t={}; Do[le1=Max@@Length/@(t1=d[First/@FactorInteger[n]]); t2=Flatten[Table[Partition[d[n], i, 1], {i, le1}], 1]; If[!PrimeQ[n]&&Complement[t1, t2]=={}, AppendTo[t, n]], {n, 20, 5850}]; t (* Jayanta Basu, May 31 2013 *)
PROG
(PARI) substr(m, n)=my(a=#Str(m), b=#Str(n)); for(i=0, a-b, if(valuation(m-n, 10)>=b, return(1)); m\=10); 0
is(n)=if(isprime(n)||n<9, return(0)); my(f=factor(n)[, 1]); for(i=1, #f, if(!substr(n, f[i]), return(0))); 1 \\ Charles R Greathouse IV, Jul 09 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Aug 15 1999
STATUS
approved