OFFSET
1,3
LINKS
G. C. Greubel, Rows n = 1..50 of the irregular triangle, flattened
FORMULA
T(n, k) = Sum_{j=0..k-1} (-1)^(k-j-1)*A142459(2*n, j+1). - G. C. Greubel, Mar 19 2022
EXAMPLE
Triangle begins:
1;
1, 58, 1;
1, 1556, 12006, 1556, 1;
1, 39054, 1461615, 5647300, 1461615, 39054, 1;
1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1;
MATHEMATICA
(* First program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1, k-1, m] + (m*k-(m-1))*t[n-1, k, m]];
T[n_, k_]:= T[n, k] = t[n+1, k+1, 4]; (* t(n, k, 4) = A142459 *)
Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k, 0, n}]/(1+x)], x], {n, 1, 14, 2}]]
(* Second program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1, k-1, m] + (m*k-m+1)*t[n-1, k, m]]; (* t(n, k, 4) = A142459 *)
T[n_, k_]:= T[n, k]= Sum[ (-1)^(k-j-1)*t[2*n, j+1, 4], {j, 0, k-1}];
Table[T[n, k], {n, 12}, {k, 2*n-1}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
PROG
(Sage)
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142459(n, k): return T(n, k, 4)
flatten([[A225415(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, May 07 2013
EXTENSIONS
Edited by N. J. A. Sloane, May 11 2013
STATUS
approved