login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225415
Triangle read by rows: absolute values of odd-numbered rows of A225434.
2
1, 1, 58, 1, 1, 1556, 12006, 1556, 1, 1, 39054, 1461615, 5647300, 1461615, 39054, 1, 1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1, 1, 24414050, 11462721645, 414730580760, 3221733789330, 6783391017228, 3221733789330, 414730580760, 11462721645, 24414050, 1
OFFSET
1,3
FORMULA
T(n, k) = Sum_{j=0..k-1} (-1)^(k-j-1)*A142459(2*n, j+1). - G. C. Greubel, Mar 19 2022
EXAMPLE
Triangle begins:
1;
1, 58, 1;
1, 1556, 12006, 1556, 1;
1, 39054, 1461615, 5647300, 1461615, 39054, 1;
1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1;
MATHEMATICA
(* First program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1, k-1, m] + (m*k-(m-1))*t[n-1, k, m]];
T[n_, k_]:= T[n, k] = t[n+1, k+1, 4]; (* t(n, k, 4) = A142459 *)
Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k, 0, n}]/(1+x)], x], {n, 1, 14, 2}]]
(* Second program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1, k-1, m] + (m*k-m+1)*t[n-1, k, m]]; (* t(n, k, 4) = A142459 *)
T[n_, k_]:= T[n, k]= Sum[ (-1)^(k-j-1)*t[2*n, j+1, 4], {j, 0, k-1}];
Table[T[n, k], {n, 12}, {k, 2*n-1}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
PROG
(Sage)
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142459(n, k): return T(n, k, 4)
def A225415(n, k): return sum( (-1)^(k-j-1)*A142459(2*n, j+1) for j in (0..k-1) )
flatten([[A225415(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
CROSSREFS
The m=4 triangle in the sequence A034870 (m=0), A171692 (m=1), A225076 (m=2), A225398 (m=3).
Sequence in context: A301558 A022082 A225434 * A033378 A259082 A366457
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, May 07 2013
EXTENSIONS
Edited by N. J. A. Sloane, May 11 2013
STATUS
approved